
Limnol. Oceanogr. 9999, 2024, 1–13
© 2024 Association for the Sciences of Limnology and Oceanography.

doi: 10.1002/lno.12527

Nonlinear responses in interannual variability of lake ice
to climate change

David C. Richardson ,1* Alessandro Filazzola ,2,3 R. Iestyn Woolway ,4 M. Arshad Imrit,3

Damien Bouffard ,5,6 Gesa A. Weyhenmeyer ,7 John Magnuson,8 Sapna Sharma 3

1Biology Department, SUNY New Paltz, New Paltz, New York, USA
2Apex Resource Management Solutions, Ottawa, Ontario, Canada
3Department of Biology, York University, Toronto, Ontario, Canada
4School of Ocean Sciences, Bangor University, Wales, UK
5Department of Surface Waters—Research and Management, Eawag (Swiss Federal Institute of Aquatic Science and Technology),
Kastanienbaum, Switzerland
6Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
7Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
8Center for Limnology, University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract
Climate change is contributing to rapid changes in lake ice cover across the Northern Hemisphere, thereby

impacting local communities and ecosystems. Using lake ice cover time-series spanning over 87 yr for 43 lakes across
the Northern Hemisphere, we found that the interannual variability in ice duration, measured as standard deviation,
significantly increased in only half of our studied lakes. We observed that the interannual variability in ice duration
peaked when lakes were, on average, covered by ice for about 1 month, while both longer and shorter long-term
mean ice cover duration resulted in lower interannual variability in ice duration. These results demonstrate that the
ice cover duration can become so short that the interannual variability rapidly declines. The interannual variability
in ice duration showed a strong dependency on global temperature anomalies and teleconnections, such as the
North Atlantic Oscillation and El Niño–Southern Oscillation. We conclude that many lakes across the Northern
Hemisphere will experience a decline in interannual ice cover variability and shift to open water during the winter
under a continued global warming trend which will affect lake biological, cultural, and economic processes.

The variability of weather conditions is expected to increase
under ongoing climate change with more extreme events
occurring, including, for example, heat waves, droughts, and
intensive precipitation events (e.g., Diffenbaugh et al. 2013;
Pendergrass et al. 2017; Cook et al. 2018). Extreme events have
deleterious effects on ecosystem goods and services such as
storm surges (e.g., Karim and Mimura 2008) or decreasing food
security (e.g., Thornton et al. 2014). Similarly, phenological
observations in lakes, such as the timing and duration of lake
ice cover have been predicted to increase in variability under

climate change (e.g., Weyhenmeyer et al. 2011). However,
phenological changes cannot continue interminably as a new
stable state might be reached, that is, lakes might turn from
being ice-covered to becoming ice-free (Sharma et al. 2019).
Increasing variability may provide an early-warning signal for
reaching a new stable state (Scheffer et al. 2009). Thus, docu-
menting changes in the variability of ice cover is critical for
understanding how lakes are responding to climate change
(Rühland et al. 2023), as ice on lakes plays an important role in
numerous physical and ecological lake processes in winter and
throughout the rest of each year (Hampton et al. 2017; Hébert
et al. 2021; Jansen et al. 2021).

Changes in lake ice phenology (timing of ice-on and ice-
off) have shortened lake ice duration over the last century
because of climatic variation (Magnuson et al. 2000; Newton
and Mullan 2021). Despite the consistent decrease in ice
duration in lakes around the world, year-to-year variability in
the length of ice cover remains high (Duguay et al. 2006;
Wang et al. 2012) with linear trends explaining < 30% of the
overall variation (e.g., Wynne 2000; Benson et al. 2012).
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The extreme ice seasons could be driven by late freezes, early
melts, multiple freeze-melt events, or even no ice cover at all
(Bernhardt et al. 2012; Higgins et al. 2021; Sharma
et al. 2021b). These extremes, including ice-free seasons, are
predicted to increase dramatically in the future for individual
lakes (Robertson et al. 1992; Magee and Wu 2017) and
regions of lakes in the Northern Hemisphere (Sharma
et al. 2021a; Wang et al. 2022). However, it is not yet clear
which lakes are most sensitive to high interannual variability
with the recent rapid increase in ice loss and which factors
are driving interannual variability in lake ice (Brown and
Duguay 2010).

Global anthropogenic climate change and teleconnections,
large-scale climate linkages, can affect local and regional
weather patterns, especially, air temperature, which is inte-
grally related to lake ice (Ghanbari et al. 2009; Filazzola
et al. 2020; Imrit and Sharma 2021). With synergistic interac-
tions between climate change and teleconnections, extremes
and interannual variability of air temperature are predicted to
increase (IPCC 2021); thus, it is likely that the duration of ice
cover will also become increasingly variable with periodicity
related to teleconnections (Wang et al. 2012). In past research,
the interannual variability of ice has been identified as pre-
dominantly increasing with shorter ice cover when examined
at the annual, decadal, and 20-yr time scales (Kratz et al. 2000;
Weyhenmeyer et al. 2011; Benson et al. 2012). One exception
is that when broken into two 50-yr periods, ice duration vari-
ability decreased in many lakes, especially across Europe
(Benson et al. 2012). Ice duration has a finite limit with the
complete loss of ice, indicative of a nonlinear relationship that
supports previous inconsistent results. Therefore, it is critical
to understand the relationship between ice duration and vari-
ability when trying to understand and predict the response of
lake ice to global drivers of regional weather like climate
change and teleconnections.

Here, we explored patterns and drivers of lake ice variability
in 43 Northern Hemisphere lakes over the last 87 yr, using a
recently compiled database on lake ice phenology (Sharma
et al. 2022). We define interannual variability in ice as the
calculated standard deviation or variance of ice phenology
duration over a series of years in a single lake. We asked three
main questions: (1) What patterns emerge when examining
the trends in ice variability over the past 87 yr?; (2) Is there a
consistent relationship between aspects of ice phenology
(ice-on, ice-off, and duration) and the variability observed in
ice phenology across different lakes?; and (3) To what extent
can climate anomalies and teleconnections, recognized as
global drivers of regional weather, explain the fluctuations in
ice duration amidst the observed decreasing ice trends? We
hypothesized that the interannual variability of ice phenology
no longer significantly increases if ice duration becomes too
short, following a nonlinear relationship. The hypothesis
implies that lake in lakes in colder geographic regions would
experience increasing interannual variability while lakes in

warmer geographical regions will experience a decrease
in interannual variability. We also hypothesized that warmer
global temperatures in the Northern Hemisphere winter and
teleconnection indices, such as North Atlantic Oscillation
(NAO) and El Niño–Southern Oscillation (ENSO), will signifi-
cantly be related to the year-to-year variability in ice duration
but with distinct geographical differences (Livingstone 2000;
Ghanbari et al. 2009; Bai et al. 2012; Imrit and Sharma 2021).

Materials and methods
Ice duration and lake characteristics

Using a database of 78 lakes with ice phenology records
extending over 100 yr (Sharma et al. 2022), we selected 43 lakes
based on records that included ice duration with more than
65% of years with ice data, even if one or more winters were
noted as ice-free (Supporting Information Table S1). These lakes
were found between 42.50�N and 65.60�N latitude, spanning
nine different countries (Supporting Information Fig. S1). We
chose to examine records between 1931 and 2018 to encapsu-
late contemporary ice patterns in the Northern Hemisphere
with a sufficiently long time series for as many lakes as possible
(Supporting Information Table S1). Missing values for ice dura-
tion were uncommon in recent decades, although a few of the
lakes were missing ice duration in the years typically surround-
ing world or local events (e.g., wars) that prevented data collec-
tion (Supporting Information Table S1; Sharma et al. 2022).

The ice phenology records included the duration of ice cover
(in days), the geospatial coordinates of the survey point (latitude
and longitude), the lake name, and the winter year of ice cover,
that is, a lake that froze in January 2000 would be assigned the
winter year of 1999 as winter encompasses two calendar years
(i.e., 1999–2000). The database we used for ice phenology records
also included information on lake morphometry, such as surface
area, maximum lake depth, and elevation (Sharma et al. 2022).

Weather and climate data
We obtained the maximum winter air temperatures for

December, January, and February (DJF) from the Climatic
Research Unit (CRU) of East Anglia (Harris et al. 2020), which
were downscaled to 0.5� � 0.5� grid cells. We acknowledge that
the available climate data has limitations in terms of resolution,
which may result in lakes that are close together having the
same temperature value. However, we selected the CRU dataset
as having the finest spatial resolution while also providing
annual climate patterns. Monthly temperature values were
extracted for each year at every lake where data on ice duration
was available, including years with no ice present. We obtained
global climate and teleconnection indices monthly for October
through May, spanning the time frame of ice cover from the
lakes in this dataset. Global annual temperature anomalies
(GTA) were obtained from the National Oceanic and Atmo-
spheric Administration and averaged over land and ocean
(NCEI 2023). We also considered two teleconnection indices as
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potential drivers of local winter weather conditions. We down-
loaded both NAO and ENSO monthly indices from the
National Weather Service Climate Prediction Center (National
Weather Service 2023).

Calculating variability in ice duration
We chose ice duration for these analyses because we could

appropriately quantify ice duration when a lake did not freeze
(ice duration = 0 d), which is not possible with ice-on or ice-
off dates when a lake did not freeze. First, for visualization, we
calculated a 10-yr moving average and Bollinger Bands, one
rolling 10-yr standard deviation above and below the moving
average, that can indicate the volatility of a time series
(Bollinger 1992). We used standard deviations to quantify var-
iability patterns in ice duration. We applied 10-yr rolling stan-
dard deviations to account for variations included in major
climate oscillations and teleconnection patterns that happen
periodically (Sharma and Magnuson 2014; Imrit and
Sharma 2021). All analyses and visualizations were completed
using R version 4.1.2 (R Core Team 2022) for this section and
the rest of the manuscript.

While simple moving averages and rolling standard devia-
tions can help understand trends, the overlapping nature of
the rolling windows results in high autocorrelation. In addi-
tion, choosing a single window for calculating variability can
result in different conclusions (e.g., Benson et al. 2012). As an
alternative, we identified all sequential windows between
4 and 30 yr in length (26 versions of sequential windows),
starting with 2018 and moving backward to 1931. For exam-
ple, a 16-yr sequential window would encapsulate non-
overlapping sets of 16 yr (e.g., 2018–2003; 2002–1986), while
a 4-yr sequential window would encapsulate non-overlapping
sets of 4 yr (e.g., 2018–2015; 2014–2011). For each sequential
window, we required a minimum of 75% of years having
duration data; for those windows, we calculated the mean
(hereafter, duration mean), standard deviation (hereafter,
duration SD), and coefficient of variation (duration SD � 100/
duration mean). We also calculated the year for each sequen-
tial window as the median of the start years in that window.

Trends in duration mean and duration SD
To determine whether a change in duration mean and SD

occurred over the time series, we calculated linear models
based on the duration mean or SD for each sequential win-
dow size. For example, with 10-yr windows, there would be
up to 9 duration means and duration SD incorporated into
the linear model. We used Theil–Sen median regressions
(Komsta 2019) with the duration mean or duration SD as the
response variable and median year as the predictor. We used
a median-based regression because these methods are rela-
tively robust to outliers, repeated measures, and changes in
the distributions as the SD would become right-skewed with
an increased number of years with no ice cover (Siegel 1982).

We calculated a slope for duration mean and SD for all
sequential window sizes.

To determine which drivers related to trends in duration SD,
we chose trends calculated with 17-yr sequential windows
because 17-yr windows were the most represented when evaluat-
ing median trends in duration SD. We modeled trends in dura-
tion SD using generalized additive models (GAMs; Hastie and
Tibshirani 1990; Wood 2017). We built candidate models based
on ice characteristics, winter air temperature, geomorphometry,
and geography established for each lake. For ice characteristics,
we calculated the percent of ice-free years and the mean duration
length in days for each lake. For winter air temperature, we used
the annual average daily maximum temperature from DJF for
each lake. Over all the years, we calculated the median DJF
annual daily maximum temperature. We averaged across the
three winter months to use the mean winter temperature for all
analyses. We chose to summarize winter temperatures here to
encapsulate the time period when most of these geographically
and morphologically diverse lakes are frozen in a year. For geo-
morphometry, we used the surface area and maximum depth;
both geomorphometry variables were log-transformed
because of the several orders of magnitude spread (e.g., Lake
Suwa is 7.6 m deep while Lake Baikal is 1642 m deep). For
geography, we used latitude, longitude, and elevation. We fit
increasingly complex GAMs using the “mgcv” package (ver-
sion 1.8-40; Wood 2017) and ultimately selected the models
that had statistically lower AIC and maximized deviance
explained using the compareML function in the “itsadug”
package (van Rij et al. 2022). We extracted all significant
smooths for the selected GAM using the confint function in
the “schoenberg” package (Simpson 2018), visualized the
smooths using the “ggplot2” package (Wickham 2016), and
arranged the plots with “patchwork” package (Pedersen 2022).

Relationship between ice phenology mean and SD
We examined the difference in variability between the two

different ice phenology metrics (ice-on and ice-off) that are
used to calculate ice duration. For each lake, we applied the
Theil–Sen median regressions (Komsta 2019) for both ice-on
and ice-off and calculated the residuals for each year. We used
those residuals to calculate two overall variances (ice-on and
ice-off) and compared those two variances using an F-test.

To determine the relationship between ice phenology and
variability, we calculated the day of the year for ice-on
and ice-off for each lake. We ignored years when the lakes did
not freeze for the winter since there are no ice-on or ice-off
dates recorded for that year. We used ice-on and ice-off means
and SDs calculated for every lake for all sequential windows
(n = 4–30 yr). To examine the shape of the relationship
between mean and SD for each ice phenology variable, we fit
GAM models (model: SD � mean with k = 7 knots possible)
using the “mgcv” package (version 1.8-40; Wood 2017) for
each of the sequential window sizes (n = 4–30 yr). We assessed
the effective degrees of freedom (edf), which reflects the
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degree of nonlinearity of a curve: edf = 1 indicates a linear
relationship, edf up to 2 indicates a weak nonlinear relation-
ship, and edf > 2 indicates a highly nonlinear relationship.
We also assessed the mean ice-on or ice-off date when the
GAM curve was at a maximum.

We hypothesized that the relationship between duration
and interannual variability of ice phenology would follow a
nonlinear Shepherd equation (eq. 1, fig. 1a, Shepherd 1982).
To determine the relationship between ice duration and vari-
ability that matches our proposed hypothesis (Fig. 1a), we
used duration means and duration SD calculated for every
lake for all sequential windows (n = 4–30 yr). For each
sequential window size, we fit a Shepherd function (Eq. 1)
between variables for duration mean (meanwindow) and dura-
tion SD (SDwindow), which is the generalized form of the
Michaelis–Menten function with three different parameters
(A, B, and C) that permits the function to be domed or
unbounded with a non-zero asymptote (eq. 1, Iles 1994). The
Shepherd function appeared to be a good fit from the ice
phenology GAM results, given that we could now include
ice-free years (duration = 0 d). We estimated the three
parameters using nonlinear least-squares estimates. We calcu-
lated the peak of the curve using the root of the first deriva-
tive of the Shepherd function and the inflection point using
the root of the second derivative (Iles 1994). To match with
the hypothetical groups proposed in Fig. 1a, we used a
k-means clustering algorithm to identify clusters across all
the individual sequential window sizes. We ran the algorithm
for 1 cluster up to 9 clusters and examined the declining pat-
tern of “within sums of squares” with an increasing number
of clusters to look for an elbow, indicating that additional
clusters have little added explanatory value (Tibshirani
et al. 2001). Using the five identified clusters, we labeled each
sequential window based on group (Fig. 1a).

SDwindow ¼ A�meanwindow

Bþmeanwindow
C : ð1Þ

We hypothesized that lakes would cluster into groups along
the nonlinear relationship (Fig. 1). In lakes with no ice, inter-
annual variability is 0; those lakes are consistently frozen
(Fig. 1a,b: region i). Lakes in the warmest region with the
shortest ice cover would experience decreasing variability
(Fig. 1a,b: region ii). In slightly cooler regions, lakes would shift
to high and stable variability (Fig. 1a,b: region iii). Lakes in col-
der regions would experience intermediate and increasing inter-
annual variability (Fig. 1a,b: region iv). To identify which lake
characteristics predicted each lake group located on the Shep-
herd function (Fig. 1), we selected the window size (16 yr) that
was the best fit, based on AIC and R2, out of each of the Shep-
herd model fits. We selected the most recent 16-yr sequence
(2002–2018) and identified the cluster assigned by cluster analy-
sis for each lake. We used groups assigned for the five clusters as
identified above (i, ii; iii; iv.1; iv.2; iv.3) and also used three
groups (i, ii; iii; iv) to match Fig. 1a as categorical response vari-
ables. We used a regression tree with morphometric variables
(max depth, surface area) and geography (latitude, longitude,
elevation) to explain the assigned group. A parsimonious regres-
sion tree was selected by pruning the tree to the level where the
complexity parameter minimized the cross-validation error. We
calculated the percent variation explained by the regression tree
(R2) as R2 = 1 � relative error (Sharma et al. 2012). Regression
trees were completed using the “rpart” and “rpart.plot” packages
(Milborrow 2019; Therneau and Atkinson 2019).

Global explanation of ice duration residuals
We examined the effects of global climate and teleconnection

factors on year-to-year variability, measured as residuals from
a Thiel–Sen slope line fit to all data (1931–2018) as above.

Fig. 1. (a) Conceptual figure showing the hypothesized relationship following the Shepherd equation between ice duration and variability (measured as
interannual duration standard deviation: SD) with four groups identified with the vertical dotted line indicating the peak of the relationship. (b) For each
of those groups, we present corresponding conceptual models of temporal trends in ice duration and variability over the last � 90 yr as rolling averages
(black line) and rolling standard deviations (gray ribbon).
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Given the spatial distribution of our lakes, mostly in North
America and Europe, and the timing of ice phenology, spanning
October to May, we collapsed all three variables (GTA, ENSO,
and NAO) to bimonthly averages for October/November (ON),
December/January (DJ), February/March (FM), and April/May
(AM) resulting in 12 unique predictor variables. We used these
12 variables scaled to bimonthly means to capture seasonal dif-
ferences between variability in the timing of ice on our study
lakes while also avoiding over-parameterizing models with too
many explanatory variables. We removed 4 lakes with < 5 yr of
non-zero ice cover as residuals were all close or equal to 0. For
the remaining 39 lakes, we modeled the annual residuals of ice
duration using GAMs with the same 12 explanatory climatic
variables and fixed the number of basis functions for each
smoothed term to 4 for each parameter. For each lake, we esti-
mated GAMs using automatic parameter selection by penalizing
each smooth using the “select = TRUE” option in the “mgcv”
package (version 1.8-40; Wood 2017). We extracted all signifi-
cant smooths for the selected GAM as above.

Results
Trends in duration mean and duration SD

The duration of lake ice varied considerably among years
and between lakes (Fig. 2; Supporting Information Fig. S2).
The average duration of ice cover for the entire dataset was
112 d, ranging from a minimum of 0 to a maximum of 236 d
(Supporting Information Table S2). Some lakes that were
almost entirely ice-free for the duration of their time series
had little to no interannual variation, such as Aergerisee
(Fig. 2a). Lakes with a high frequency of ice-free years tended
to have fluctuating standard deviations with many years close
to 0, such as Greifensee (Fig. 2b). Other lakes had ice durations
lasting around 2 months (e.g., Balaton, Fig. 2c) or longer ice
durations lasting over 100 d (e.g., Otsego, Fig. 2d), both with
less frequent ice-free years over the entire record.

Most lakes (79%) displayed decreasing duration means but
trends in duration SD were less consistent looking across
sequential windows of 4–40 yr (Fig. 3). Duration SD signifi-
cantly increased for 49%, decreased for 7%, and had no signif-
icant trend for 44% of lakes (Fig. 3). Trends in the standard
deviation of 17-yr sequential windows were best explained by
ice characteristics, winter air temperature, and lake depth in a
GAM that explained 85.5% of overall deviance (Fig. 4;
Supporting Information Table S3). Lakes with no ice-free years
had increasing trends in duration SD, but lakes with an
increasing number of ice-free years were more likely to have
decreasing trends in duration SD until the lake was ice-free all
the time (Fig. 4a). Lakes with the coldest winter daily maxi-
mum air temperatures were more likely to have decreasing
duration SD while approaching 0�C air temperatures indicated
increasing trends in duration SD (Fig. 4b). When approaching
5�C, lakes were likely to have to change in duration SD
(Fig. 4b). Deeper lakes had increasing trends in standard

deviation (Fig. 4c). Finally, the trends in duration were most
likely to switch from increasing to decreasing at an average of
� 100 d of ice cover (Fig. 4d). The trends in duration CV pre-
dominantly matched those of duration SD (data not shown)
and therefore, we proceeded with using duration SD for the
rest of the analyses.

Relationship between ice phenology mean and SD
Ice-on dates tended to have higher variability than ice-off

dates. Ice-on variance was almost twice ice-off variance
(F2978,2936 = 1.82, p < 0.001; Fig. 5a). Later mean ice-on dates
had higher ice-on SDs across all sequential windows with vari-
ability increasing by � 40% across the range of mean ice-on
dates (Fig. 5b). Ice-on SDs increased linearly with increasing
ice-on mean (edf = 1) but some sequential windows had
increasing quadratic or higher polynomial (edf ≥ 2) fits with

Fig. 2. Annual ice duration (black points) and variability patterns in ice
duration for 4 selected study lakes. The rolling 10-yr mean is presented as
a gray line and variability is drawn as light gray ribbons representing the
rolling mean � rolling standard deviation in ice duration over a 10-yr win-
dow. Lakes are sorted by the group from Fig. 1 that they might occupy
including (a) group i: Aergerisee, (b) group ii: Greifensee, (c) group iii:
Balaton, and (d) group iv: Otsego.
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maxima on 17 January. The GAM model explained 13% of
the variance at most. Earlier mean ice-off dates had higher SDs
across all sequential windows with variability increasing by
300% across the range of mean ice-off dates (Fig. 5c). The
GAM model explained up to 77% of the variance; most of
the fits were highly nonlinear (edf > 2). Maximum variance

was on 16 February across all sequential windows and
23 February at the models with the downward tilt in early
February (edf > 4.5) which were able to capture the Shepherd
function-shaped curve proposed for ice duration (Fig. 1a).

We found a nonlinear relationship between duration
standard deviation and average ice duration that was similar
across all sequential windows (Fig. 6), and which supported
our hypothesis (Fig. 1a). The median peak of all the models
was at 26.0 d of ice duration while the median inflection
point was 47.8 d (Fig. 6); this also represents the transition
between increasing variability and decreasing variability
(Fig. 1a). The inflection point of this relationship was
at � 1.5 months, at that boundary, there is a shift from
accelerating (> 1.5 months ice duration) to decelerating
(< 1.5 months ice duration) duration SD. The model with
the best fit, as identified by deviance explained and AIC,
was for 16-yr sequential windows (A = 474, B = 175,
C = 1.7, R2 = 0.75; Fig. 6b). Using all the data across all
sequential windows and all lakes, k-means clusters were cal-
culated for 1–9 clusters. Within sums of squares minimized
at 5 clusters; therefore, we used 5 clusters to categorize each
group of the duration mean vs. duration SD (Fig. 6b;
Supporting Information Fig. S3). One cluster was identified
at the lower end of ice duration; we labeled that as group i,
ii to match with groups i and ii from the conceptual model
(Fig. 1). Group iii matched the conceptual model, while
group iv from the conceptual model was identified by the
k-mean clustering as three distinct clusters, we labeled those
as groups iv.1, iv.2, and iv.3 according to increasing ice
duration (Fig. 6b) and also lumped all of those iv categories
together to match our hypotheses (Fig. 1a).

Geography and depth of each lake explained different
categories for the most recent 16-yr window (2012–2018)
for each lake. For five groups, a tree with both elevation and

Fig. 4. Trends in standard deviation of ice duration explained by (a) percentage of ice-free years, (b) median of the December, January, and February
maximum daily air temperature (DJF daily max.), (c) maximum depth (max. depth), and (d) mean ice duration over the 1931–2018 time-span for each
lake. While other parameters were included in the model, the four significant parameters are presented. Curves (black line) represent smoothed relation-
ships holding the other variables constant as identified by a general additive model; bands represent 95% credible intervals.

Fig. 3. A comparison between the mean ice duration rate of change
(duration slope) and the standard deviation of ice duration rate of change
(duration SD slope) for each lake. The vertical and horizontal error bars
represent a 1.5 � interquartile range for all slopes calculated from sequen-
tial windows of 4–40 yr. The color of the point represents whether 95%
of the duration SD slopes are above, equal to, or below 0; the shape of
the points represents whether 95% of the mean duration slopes are below
or equal to 0.
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latitude explained 66% of the apparent variance. For three
groups, a tree with both maximum depth and latitude
explained 85% of the apparent variance. Lakes at higher lat-
itudes (> 55�N) were exclusively group iv (Fig. 7). Lakes at
higher elevation (> 394 m) and latitude were group iv.3 with
the longest ice duration and intermediate duration SD
(Fig. 7a). Lakes at lower latitudes but higher elevations
tended to be group i, ii (Fig. 7a). Lakes at a lower latitude,
between 40�N and 55�N and deeper maximum depth were
group i, ii, and iii while shallower maximum depth (< 29 m)
were in group iv (Fig. 7b).

Global explanation of ice duration residuals
Across the 39 lakes, ice duration residuals were significantly

related to a range of climate and teleconnection variables.
Selected GAMs explained between 8% and 59% of the

deviance in ice duration residuals (Fig. 8). Between 0 and
6 explanatory bimonthly variables (median = 2) were
significant for each lake (p < 0.05; Fig. 8). Of all the climate
and teleconnection variables, NAO for ON (n = 17) and the
global temperature anomaly for AM (n = 16) were the most
common significant explanatory variables. In general, higher
global temperatures in any bimonthly period resulted in
shorter-than-expected ice durations (Fig. 8). Similarly, increas-
ing NAO indices in ON resulted in shorter-than-expected ice
durations (Fig. 8).

Discussion
Not all lakes experienced increasing interannual variability in

lake ice duration, despite most experiencing unprecedented rates
of recent ice loss supporting our initial hypothesis. Therefore, as

Fig. 6. (a) Shepherd model fits for 16-yr sequential windows (black line) and 5th to 95th credible interval for all model fits (n = 4–30-yr sequential
windows). The blue rectangle represents the 5th to 95th percentiles of the peak of the curve across all models. (b) Shepherd model fit for the 16-yr
sequential windows from all lakes displayed as points. There are 18 overlapping points at 0 d ice duration and 0 d ice duration SD. Colors and labels
indicate groups as identified by k-means clustering analysis.

Fig. 5. (a) Relative variability between ice-on and ice-off dates with each point representing the residual to the temporal trends (Theil–Sen slope analysis)
for each lake. The violin plot shows the distribution of the points and the lines on the violin plots represent the quartiles for each distribution with a wider
spread between lines indicating more variability. Fitted GAM models between mean and standard deviation (SD) for (b) ice-on and (c) ice-off dates for
each sequential window size from 4 to 30 yr.
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lakes continue to warm and ice duration decreases (Sharma
et al. 2021b), we can anticipate an increase in variability until ice
seasons last � 1 month (Fig. 6). After which, there are increas-
ingly high numbers of ice-free years with decreasing variability
and, eventually, lakes may cross a tipping point to either have a
sequence of ice-free years or become permanently ice-free as fore-
casted by Sharma et al. (2021a) but will remain to be seen in the
coming decades if greenhouse gas emissions are not mitigated.
This suggests that year-to-year variability in ice duration will be
larger when there is a short duration of ice cover. Geography, air
temperatures, and lake depth were found to drive the trends of
ice variability, in addition to the frequency of ice-free years
(Figs. 4, 7), suggesting that there may be some lakes that are nat-
urally more variable or sensitive to changes in climate than
others. Finally, in many lakes, year-to-year variability responded
to both large-scale indices of climate change and teleconnections
such as NAO and ENSO.

Trends in duration mean and duration SD
Most lakes have been experiencing a rapid decline in ice

duration (Fig. 3), consistent with other lakes and rivers in the
Northern Hemisphere (e.g., Magnuson et al. 2000; Newton and
Mullan 2021; Sharma et al. 2021b). Several lakes in this study
did not have decreasing ice durations because they have already
transitioned to predominantly ice-free lakes (e.g., Fig. 2a). On
average, lakes were losing 21.7 d of ice per century using the
sequential window technique in this study, which was similar
to rates calculated using linear regression for these lakes in a
prior study (Sharma et al. 2021b). The duration SD gained an
average of 4 d per century, with many lakes increasing in vari-
ability. This reflects the potentially increasing variability of
both components of ice duration, ice-in and ice-out, which is

driven by regional weather conditions and the rate of change
of those weather conditions at either end of the winter season
(Kratz et al. 2000; Arp et al. 2013). Notably, some lakes had
decreasing variability, counter to previous studies indicating
only increasing or no change in variability (Weyhenmeyer
et al. 2011; Benson et al. 2012; Kainz et al. 2017); this phenom-
enon may be a potential indicator of an ice-free future.

Ice conditions, air temperature, and depth had the largest
effects on trends in duration variability. Lakes experiencing ice-
free winters for more than half of the time experienced rapidly
decreasing variability in ice duration, most rapid rates of ice
loss, and are vulnerable to permanent ice loss if greenhouse gas
concentrations are not mitigated (Sharma et al. 2021a,b). Air
temperature is closely linked with ice duration (Palecki and
Barry 1986; Robertson et al. 1992; Duguay et al. 2006) and we
confirm that this extends to trends in ice variability (Fig. 4).
Lakes found in the southern regions of the “slush zone” in the
United States and Eurasia where daily winter air temperatures
reach a maximum of around or just below 0�C have increasing
variability (Fig. 4b) and are most sensitive to the increased fre-
quency of extreme ice-free years (Filazzola et al. 2020). The
deepest lakes, which are also vulnerable to short ice duration,
intermittent ice cover, and some of the fastest rates of ice cover
loss (Sharma et al. 2019, 2021b), are increasing in ice duration
variability. Larger and deeper lakes require consistently colder
air temperatures because larger volumes of water must be
cooled in the late fall and early winter (Brown and
Duguay 2010; Arp et al. 2013; Magee and Wu 2017). Large
lakes with long fetches are also more sensitive to wind
action, breaking the skim of ice at the beginning and end of
the ice season (Brown and Duguay 2010; Leppäranta 2010;
Magee and Wu 2017). For example, Grand Traverse Bay in

Fig. 7. Regression tree results for the most recent 16-yr window (2012–2018) for each lake (a) using 5 groups identified by k-means cluster analysis and
using (b) three groups, collapsing all groups from iv.1 to iv.3 down to iv. The lines indicate split points from optimal regression trees for the explanatory
variables, including latitude, elevation, and maximum depth (max. depth) for each lake.
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Lake Michigan and Bayfield in Lake Superior had the highest
variability in ice duration.

Relationship between ice phenology mean and SD
Ice phenology exhibited more variability at the begin-

ning of the season than at the end (Fig. 5a), consistent
with other lakes (Kratz et al. 2000; Zdorovennov et al. 2013).

Ice-on dates are controlled by local factors like freezing air
temperatures, precipitation, and low wind that will set-up
ice formation (Duguay et al. 2006; Mishra et al. 2011;
Hou et al. 2022). Ice-off dates still are dependent on crossing
the 0�C threshold at the end of the ice-season but also reflect
the entire winter season with precipitation on ice, ice thickness,
and snow cover and drive the timing of ice melt (Jensen

Fig. 8. Relationships of ice duration residual and bimonthly average global temperature anomaly (GTA), North Atlantic Oscillation (NAO), and El Niño–
Southern Oscillation (ENSO) for October/November (ON), December/January (DJ), February/March (FM), and April/May (AM) as determined by a gen-
eral additive model (GAM). Any significant parameters were identified by a filled tile, the smooths for each relationship are plotted as a black line to see
the direction and shape of the trend. The right panel indicates the percentage of deviance explained (Dev. Expl.) for each lake’s GAM fit.
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et al. 2007; Preston et al. 2016). Despite both ice phenology
metrics increasing in variability as the ice season shortens,
ice-off dates exhibit more nonlinear patterns. Ice-on dates could
continue to increase in variability while ice-off dates exhibit a
nonlinear curve that we originally hypothesized that ice
duration followed and likely drives more of the ice duration
pattern. Ice duration is a better metric for understanding
patterns in lake ice variability because ice duration captures ice
phenology from both the start and end of the season, while
also allowing for incorporation of ice-free years.

Earlier studies had suggested that variability increases with
shortened ice duration (i.e., Weyhenmeyer et al. 2011; Sharma
et al. 2016), yet we observed a nonlinear relationship between
variability and ice duration both across and within lakes over
time (Fig. 6). The previously undocumented nonlinear rela-
tionship between variability and ice duration may now be
apparent because of accelerated rates of ice loss and warmer
winter temperatures contributing to a higher occurrence of
ice-free years in lakes around the Northern Hemisphere in
recent decades (Sharma et al. 2019; Newton and Mullan 2021),
a phenomenon which was not as widespread in earlier studies
(Weyhenmeyer et al. 2011; Benson et al. 2012). Our new anal-
ysis with ice duration (Fig. 6) is more reflective of the current
state of Northern Hemisphere lakes as they move from consis-
tent ice cover to intermittent or no ice winters.

The critical transition points from increasing to decreasing
variability at � 1 month may portend ecological regime shifts, as
variability changes can be an early-warning indicator of an
impending regime shift (Scheffer et al. 2001). Once lakes cross
that boundary and begin to have decreasing variability, the shift
to ice-free winters may be an inevitable outcome. Within the
past 90 yr, some of our study lakes have already transitioned to a
new ecological state and represent the endpoints of the mathe-
matical relationship where they are now permanently ice-free
and, therefore, have no interannual variability (Fig. 6).

Our initial hypothesis was that there would be four different
groups within this mathematical relationship (Fig. 1a). These
groups could either represent the characteristics of a lake as a
whole or represent intervals of time for a particular lake, which
might not be fixed in time as ice duration declines. Because of
the sharp decline in the shape of the curve, lakes in groups
i and ii were lumped together by the clustering analysis (Fig. 6b)
but represent high variability decreasing to completely ice-free.
Geography and depth were the best predictors of the groups
identified for the most recent 16-yr window (2012–2018), which
is consistent with other studies (Arp et al. 2013). Lakes found at
higher latitudes were consistently higher in ice duration and had
moderate but increasing duration SD. The cutoff for latitudes
between 50�N and 62�N is consistent with the 61�N bound-
ary below which lakes are highly susceptible to ice loss
(Weyhenmeyer et al. 2011). At the lower latitudes, the deeper
lakes at higher elevations were the most likely to be in group i,
ii in lakes with these lakes most sensitive to experiencing
ice-free years and intermittent ice cover (Sharma et al. 2019).

Although lower elevation sites tend to be less climatically
variable (Palazzi et al. 2019), we observed higher variability at
low elevations, likely driven by warmer air temperatures and
less winter snowpack, causing shorter ice seasons (Palecki and
Barry 1986; Brown and Duguay 2010; Arp et al. 2013).

Global explanation of ice duration residuals
Overarching trends in lake ice decline are ultimately linked

to climate change (Magnuson et al. 2000; Sharma et al. 2019).
For example, higher global temperature anomalies, especially in
AM, result in shorter ice seasons (Fig. 8), likely affecting spring
melt for many Northern Hemisphere lakes. However, global
temperature and weather patterns vary from year to year, with
the effects of climate change on regional and local drivers of
limnological processes like lake ice being modulated by
teleconnections (Wilkinson et al. 2020). The resulting synergis-
tic or antagonistic between climate change and teleconnections
could result in extremes in ice duration; for example, variance
in ice phenology has been attributed to NAO or ENSO
teleconnections (Sharma and Magnuson 2014; Bai et al. 2012;
Schmidt et al. 2019). In this study, many northern European
lakes had their ice duration affected by ON NAO where NAO
effects are strongest in the early winter (Hurrell et al. 2002).
With climate change driving greater variability and extremes in
some of these oscillations (e.g., ENSO, Wang et al. 2019), lakes
may also experience abrupt shifts in their phenology between
years in response to phase switches of teleconnection patterns
or especially strong teleconnection years (Bai et al. 2012; Wang
et al. 2012). Teleconnections and the global temperature might
be better predictors of long-term and ecosystem-wide processes,
such as lake ice duration, because they integrate direct drivers,
such as meteorology, over space and time (Hallett et al. 2004).

There was a wide range in the deviances of ice duration
residuals explained by the global temperature anomaly and
the two teleconnection indices that we examined. Depending
on the timing of ice-on and ice-off, some lakes may be less
responsive to metrics averaged bimonthly. Location may play
a large role as well; for example, NAO strongly affects the
Atlantic basins of both North America and Europe (Hurrell
et al. 2002), but lakes inland from the Atlantic Ocean might
not be as responsive. Similarly, different geographic regions
might respond to the teleconnections differently, positive
NAO indices link to warm conditions in northeastern North
America and Northern Europe but cooler conditions in southern
Europe (Hallett et al. 2004). Northern European lakes in this
study had a negative relationship between ice duration and
NAO indices for late fall and early winter months (Fig. 8).

Conclusions
The effects of climate change on ecological, societal, and

physical processes have frequently been identified as nonlinear
processes (e.g., Grünig et al. 2020). Our results confirm
nonlinear responses for ice cover dynamics, with shifting inter-
annual ice phenology variability patterns if lake ice cover lasts
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for less than a month. The observed shifting patterns in lake
ice variability will have consequences for both humans and
ecosystems making planning for recreational opportunities,
such as skating races and ice fishing tournaments, even more
difficult (Magnuson and Lathrop 2014; Knoll et al. 2019).
Ultimately, these recreational events will be permanently lost
when lakes no longer freeze in warmer winters. The loss of ice
cover for lakes can promote summer warming of lakes and
harmful cyanobacterial blooms thereby reducing freshwater
ecosystem goods and services such as recreational activities and
access to potable water (Weyhenmeyer et al. 2008; Hampton
et al. 2017). Future studies on the cryosphere should include an
analysis of interannual variability to serve as early-warning
indicators and identify which systems may be approaching an
ice-free state with deleterious effects on freshwater ecosystem
goods and services year-round.

Data availability statement
All data used in this study is publicly available, including

the lake ice phenology records (https://doi.org/10.6084/m9.
figshare.19146611.v3) and climate data (https://www.nature.
com/articles/s41597-020-0453-3). All code used in the ana-
lyses will be permanently archived at Zenodo.
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