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Abstract
Small waterbodies have potentially high greenhouse gas emissions relative to their small footprint on the

landscape, although there is high uncertainty in model estimates. Scaling their carbon dioxide (CO2) and
methane (CH4) exchange with the atmosphere remains challenging due to an incomplete understanding
and characterization of spatial and temporal variability in CO2 and CH4. Here, we measured partial pres-
sures of CO2 (pCO2) and CH4 (pCH4) across 30 ponds and shallow lakes during summer in temperate
regions of Europe and North America. We sampled each waterbody in three locations at three times during
the growing season, and tested which physical, chemical, and biological characteristics related to the
means and variability of pCO2 and pCH4 in space and time. Summer means of pCO2 and pCH4 were
inversely related to waterbody size and positively related to floating vegetative cover; pCO2 was also posi-
tively related to dissolved phosphorus. Temporal variability in partial pressure in both gases weas greater
than spatial variability. Although sampling on a single date was likely to misestimate mean seasonal pCO2

by up to 26%, mean seasonal pCH4 could be misestimated by up to 64.5%. Shallower systems displayed
the most temporal variability in pCH4 and waterbodies with more vegetation cover had lower temporal
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variability. Inland waters remain one of the most uncertain components of the global carbon budget;
understanding spatial and temporal variability will ultimately help us to constrain our estimates and
inform research priorities.

Lentic waterbodies play a major role in global carbon
dioxide (CO2) and methane (CH4) cycling (Tranvik et al. 2009;
Raymond et al. 2013; Rosentreter et al. 2021a). The smallest of
these systems (i.e., ponds) have a particularly outsized influence
on global and regional CO2 and CH4 budgets relative to larger
waterbodies due both to high emissions rates and their ubiquity
(Holgerson and Raymond 2016; Ollivier et al. 2019). Despite con-
sensus regarding their importance, global estimates of CO2 and
CH4 emissions from small aquatic systems are among the most
uncertain in global budgets (Canadell et al. 2021) and remain
highly variable for several reasons (Raymond et al. 2013; Hol-
gerson and Raymond 2016; Rosentreter et al. 2021a). First, the
exact number of ponds and shallow lakes remains unclear due to
limitations in mapping ability (Messager et al. 2016), but there
are likely billions of these systems globally (Downing 2010). Sec-
ond, each system differs in physical, chemical, and biological
properties that affect rates of CO2 and CH4 exchange with the
atmosphere (Laurion et al. 2010; Holgerson and Raymond 2016;
Grinham et al. 2018). Third, there is unknown—and often unac-
counted for—spatial and temporal variability in dissolved CO2

and CH4 concentrations in the surface waters of ponds and shal-
low lakes.

Considerable progress has been made in understanding the
importance of, and controls on, lentic CO2 and CH4 cycling
and exchange with the atmosphere across space and time
(Schilder et al. 2013; Vachon and Prairie 2013; Rudberg
et al. 2021). However, the importance of spatial and temporal
variability in the smallest of these systems are not as well con-
strained, and it is even less clear what physical, biological, and
chemical properties might be useful for predicting the most
variable systems. One of the primary reasons for this lack of
understanding is inconsistent sampling protocols, specifically
regarding the intensity of spatial and temporal replication.
Testing if variables that can predict dissolved CO2 and CH4

concentrations can also predict whether a waterbody will have
high or low spatial and temporal variability of CO2 and CH4

concentrations is an important step in improving our under-
standing of CO2 and CH4 dynamics in small lentic systems
and can inform sampling schemes. Determination of the mag-
nitude of error associated with limited sampling will demon-
strate whether it is necessary to sample waterbodies across
space and time in order to reduce uncertainty in estimating
diffusive CO2 and CH4 exchange with the atmosphere and
inform methods to improve global upscaling efforts (Wik
et al. 2016; Natchimuthu et al. 2017; Loken et al. 2019).

Dissolved CO2 and CH4 concentrations vary spatially in larger
lentic systems (i.e., lakes and reservoirs; Pacheco et al. 2015;
Colas et al. 2020; Praetzel et al. 2021). For example, spatial varia-
tion in pCO2 was linked with indicators of planktonic primary

production (i.e., dissolved O2 concentration, pH) while spatial
variation in pCH4 was better described by depth and pH in
large (> 12 km2) constructed Brazilian reservoirs (Paranaíba
et al. 2018). Littoral areas of lakes typically have higher CH4

concentrations than the pelagic zone (Hoffmann et al. 2013;
Schmiedeskamp et al. 2021), though CH4 emissions might be
highest in the center of small waterbodies due to ebullition
(Matveev et al. 2016; Schmiedeskamp et al. 2021). In larger
waterbodies, differences in gas transfer velocity across space
might also lead to variability in dissolved CO2 and CH4 con-
centrations (Schilder et al. 2013). In small, shallow
waterbodies, there is less space in which physical, chemical,
and biotic drivers of CO2 and CH4 concentration can vary,
and thus spatial variability of CO2 and CH4 in ponds and
shallow lakes might be relatively less important than in
larger, deeper waterbodies. However, if there is substantial
spatial variability in CO2 and CH4 concentration in ponds
and shallow lakes, sampling schemes that only measure from
a single location in the waterbody are likely to misestimate
concentration or emission.

Temporal variability in dissolved gas concentrations and dif-
fusive fluxes in larger lentic systems exists across diel (Podgrajsek
et al. 2014, 2015; Sieczko et al. 2020), weekly (Colas et al. 2020;
Waldo et al. 2021), seasonal (Natchimuthu et al. 2017; Wiik
et al. 2018; Paranaíba et al. 2021), and annual time frames
(Finlay et al. 2019; Colas et al. 2020). Small lentic systems have
similar temporal variability to larger lentic systems (Torgersen
and Branco 2008; Huotari et al. 2009; Rudberg et al. 2021), but
less is known about the controls of this variability as research
focus has been on quantifying the magnitude, rather than the
drivers, of diel and seasonal CO2 and CH4 dynamics (Wik
et al. 2016; Natchimuthu et al. 2017; Waldo et al. 2021). We
anticipate temporal variability in CO2 and CH4 concentrations
in shallow lentic systems is likely to be higher than in larger and
deeper systems due to more frequent and extreme changes in
chemical (e.g., nutrient loading events) and physical factors
(e.g., mixing events) that might be linked with CO2 and CH4

production and consumption.
Although previous efforts have quantified the importance

of spatial and temporal variability in dissolved CO2 or CH4

concentration in one or just a few waterbodies, a broader anal-
ysis considering many waterbodies across a broad geographic
range is needed to determine the prevalence of spatial and
temporal variability across systems and to identify possible
relationships with environmental variables that might be use-
ful for predicting the most variable systems. In this study, we
examined dissolved CO2 and CH4 concentrations in 30 shal-
low lentic waterbodies (i.e., ponds and shallow lakes) across
temperate regions of Europe and North America. We aimed to:
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(1) identify the main predictors of CO2 and CH4 concentra-
tions for shallow waterbodies over a wide geographic scale;
(2) quantify the spatial and temporal variability of dissolved
CO2 and CH4 concentrations in these waterbodies, and deter-
mine how limited sampling in space and time might lead to
misestimation of mean dissolved CO2 and CH4 concentra-
tions; (3) identify waterbody characteristics that can be used
to predict systems that are likely to have high spatial and tem-
poral variability in CO2 and CH4 concentrations. This work is
an important step in advancing our understanding of lentic
CO2 and CH4 emissions, moving from identification of global
emission patterns to reducing confidence intervals and uncer-
tainty associated with these patterns (Downing 2009), helping
to reduce uncertainty in global CH4 emissions estimates.

Methods
Sampling locations and scheme

We sampled 30 ponds and shallow lakes in temperate areas
of Europe and North America in summer 2018 and 2019
(June–September, though four sampling events took place in
October; Fig. 1). Although there are various definitions of
ponds and shallow lakes (Biggs et al. 2005), here we use the
following: ponds have < 5 ha surface area and < 5 m maxi-
mum depth, while shallow lakes have > 5 ha surface area and
< 5 m maximum depth (Scheffer 2004; Richardson
et al. 2022). The waterbodies we sampled all had permanent
hydroperiods and sediment bottoms. They were located in
urban parks, residential areas, forests, and agricultural areas.
Dissolved gas sampling at each site was conducted on three
occasions (except Mud Pond, which was only sampled twice),
spread across 61.7 d on average (� 25.6 SD), ranging from
33 to 128 d between the first and last sampling date.

We measured waterbody surface area, perimeter, fetch,
maximum depth, dissolved organic carbon (DOC), total phos-
phorus (P), dissolved P concentration, chlorophyll a (Chl a),
conductivity, pH, Secchi depth, emergent plant cover, sub-
merged plant cover, floating plant cover, and the presence or
absence of fish. In some waterbodies, these environmental
variables were measured once, while at other waterbodies we
took the mean value from multiple sample dates. Chemical
samples (i.e., DOC, total P, dissolved P, Chl a) were character-
ized using a variety of techniques, employing standard
methods in the laboratory that collected the samples
(Supporting Information Table S1). Not all variables were mea-
sured in all waterbodies or on all sampling occasions (Table 1;
Supporting Information Table S1). However, for systems
where chemical samples were collected on multiple occasions,
within site variability was negligible compared to between site
variability.

To test relationships among environmental variables, we
used Pearson correlations (Supporting Information Table S2).
Prior to estimating correlations and regressions, we checked
whether the data distribution for each variable best fit a normal

or lognormal distribution using the fitdistrplus package
(Delignette-Muller et al. 2015), and made necessary transforma-
tions (Table 1). All statistical tests were conducted in R Statisti-
cal Software (R Core Team 2014) and we considered the results
of statistical tests to be nominally significant (i.e., indicative of
relationships that might be useful for explaining variation in
the data) when p ≤ 0.05.

Dissolved gas sampling, analysis, and calculation of partial
pressures

Gas sampling was conducted in the same way at all
waterbodies, with samples collected from three locations in
each waterbody on three occasions (in Gibson Pond and Mud
Pond, samples were only collected from the waterbody center).
On each sampling date, both air and dissolved gas samples
were collected. Air samples (n = 2) were collected from � 0.5 m
above the water surface in the center of the waterbody using
syringes that were flushed with air three times prior to sample
collection. Air samples were injected into pre-evacuated 12-mL
glass exetainers (LabCo Limited). Dissolved gas concentrations
were determined using a headspace equilibration technique
(McAuliffe 1971; Holgerson 2015; Aho and Raymond 2019),
and the headspace samples were stored in pre-evacuated
glass exetainers. Two samples were collected from the
waterbody center, and an additional sample was collected
from each of two site margins (i.e., locations on opposite
ends of the waterbody). Samples from the waterbody center
were considered as technical replicates, and the average CO2

and CH4 concentration of these two samples was used in
statistical analyses (we tested variability between the techni-
cal replicates as described later in the methods). All dis-
solved gas samples were collected from surface water by
filling a syringe at < 15 cm depth. The temperature of both
air and water was measured during sample collection. Atmo-
spheric pressure was determined by the elevation of the
waterbody above sea level.

Gas samples were analyzed at the Yale Analytical and Stable
Isotope Center using a Shimadzu GC 2014 or at the University
of Stirling using a Hewlett Packard GC 5890 Series II. Both
instruments were equipped with a flame ionization detector
for measuring CH4. Sample CO2 and CH4 concentrations were
determined by comparing sample peak area against a standard
curve of the peak areas of different concentrations of external
standards. Dissolved CO2 and CH4 concentrations were then
calculated for each sample following Henry’s law and the ideal
gas law using constants determined by Weiss (1974) and
Wiesenburg and Guinasso (1979).

We converted dissolved gas concentrations to partial pres-
sures (pX; μatm) using the following equation as presented by
Aho and Raymond (2019) where [X] is the dissolved gas con-
centration (μmol L�1) and Kh,x is Henry’s law solubility con-
stant (mol L�1 atm�1) for CO2 (Weiss 1974) or CH4

(Wiesenburg and Guinasso 1979) given the temperature the
water sample was collected:
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pX¼ X½ �
Kh,x

: ð1Þ

We elected to present gas partial pressures to allow for simple
prediction of whether a given location in a waterbody on a
specific date is likely to be a source (pX > atmospheric [X]), or
sink (pX < atmospheric [X]) of CO2 or CH4.

Environmental variables related to pCO2 and pCH4

We used both univariate and multivariate approaches to iden-
tify the best predictors and models of pCO2 and pCH4 as some
environmental variables had low sample sizes (Table 1). We used

univariate linear regressions to identify the strength of the rela-
tionship between each chemical, physical, and biological variable
measured and mean summer (all gas samples per waterbody)
pCO2 and pCH4 for shallow lentic systems across a broad geo-
graphic range. Before calculating regressions, we checked distri-
butions of pCO2 and pCH4, again using the fitdistrplus package;
the mean of all pCO2 values was normally distributed, while the
mean of all pCH4 values was log normally distributed. We
excluded Secchi depth from our analyses as it was strongly corre-
lated with several other variables (maximum depth, DOC,
total P, Chl a) and in several instances Secchi depth was
unmeasurable as it was greater than waterbody maximum depth.

Fig. 1. Locations of the 30 waterbodies sampled in this study (A), with panels showing location of waterbodies in North America (B) and Europe (C).
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Next, we used multiple linear regression models, stepwise
modeling, and an information theoretic model selection
approach to determine the best-approximating model to
describe mean pCO2 and pCH4. The base model included vari-
ables measured in n ≥ 28 waterbodies. As several variables
measured were strongly correlated with each other, we
selected the variable with the largest sample size to include in
the model, or if sample size was the same, we selected the vari-
able that was significant in univariate regressions. Thus, the
base model consisted of the following fixed effects: maximum
depth, pH, DOC, fish presence, and one of surface area, perim-
eter, or fetch. Including DOC in all models slightly reduced
our sample size as it was not measured in two waterbodies,
but we elected to include it due to past evidence it is linked
with aquatic CO2 and CH4 cycling (Deemer and Hol-
gerson 2021; Peacock et al. 2021). For pCO2, the base model
included the following fixed effects: fetch, maximum depth,
DOC, pH, and fish presence. We compared all combinations
of fixed effects in this model by calculating Akaike informa-
tion criterion scores corrected for small sample sizes (AICc) via
the dredge function in the MuMin package (Barton 2020). We
considered the best-approximating model to have the lowest
AICc value, and considered models within 2 ΔAICc (ΔAICc
being the difference between the best-approximating and
lower-ranked models) to be well supported (Burnham and
Anderson 2002). We report models within 2 ΔAICc but do not
interpret effects from those containing uninformative parame-
ters (Arnold 2010). If the best-approximating model contained
imprecisely estimated covariate effects (i.e., the ratio of the
estimated effect to standard error was < 2), we only interpreted
meaningful effects and advanced well estimated effects to sub-
sequent modeling stages. To this model we then iteratively

added Chl a, % floating cover, and % emergent cover (at the
cost of reduced df) to see if their inclusion would reduce AICc
(recalculated for the inclusion of each new variable owing to
changing sample sizes). We repeated this same process for
pCH4, replacing fetch with surface area, as surface area had a
higher R2 than univariate models of perimeter or fetch. For all
models, the fixed effects were scaled and fluxes log trans-
formed in order for models to converge. Neither total P nor
dissolved P were included in mixed effect model comparison
due to their relatively small sample sizes.

Spatial variability in pCO2 and pCH4

To determine the importance of spatial variability and sam-
pling location within a waterbody, we considered the degree
to which collecting samples from a single location in a
waterbody might misestimate waterbody mean pCO2 or pCH4

from three sample locations using a bootstrap regression
approach. We built the bootstrap model to randomly select a
pCO2 or pCH4 value from a single sampling location in the
waterbody on a given date as the response variable and the
waterbody mean pCO2 and pCH4 on that date as the indepen-
dent variable. We ran 1000 iterations of this model. We did
not include waterbody as a random effect in our model despite
repeated sampling as it prevented various iterations of the
model from converging. Although exclusion of this random
effect might be problematic when constructing a model with
the goal of most accurately quantifying an R2 and p-value, our
goal here was to quantify β, or the slope of the regression
model. This β value is unlikely to be altered in such a magni-
tude to influence our interpretation of the model results
regardless of the inclusion of the random effect.

Table 1. Characteristics of 30 ponds and shallow lakes in temperate areas of Europe and North America in the summers of 2018 and
2019 sampled as part of this study. Waterbody-specific values can be accessed in the data file available online.

Characteristic n Data distribution Mean Median Range

Latitude (�N) 30 Log-normal 49.95 46.64 41.69–60.02

Surface area (m2) 30 Log-normal 305,240 6227 180–8,230,000

Perimeter (m) 30 Log-normal 898 403 58–11,070

Fetch (m) 30 Log-normal 325.4 177.5 20.0–3190.0

Max depth (m) 30 Log-normal 1.6 1.3 0.6–4.8

Dissolved organic carbon (mg L�1) 28 Log-normal 10.8 7.8 4.8–32.5

Total phosphorus (μg L�1) 10 Log-normal 100.9 16.4 3.0–294.0

Dissolved phosphorus (μg L�1) 11 Log-normal 63.8 22.5 13.7–236.6

Chl a (μg L�1) 20 Log-normal 32.7 22.5 7.2–97.0

Conductivity (μs cm�1) 29 Log-normal 397.1 270.6 8.0–1722.0

pH 29 Normal 7.7 7.5 4.5–9.3

Secchi depth (m) 16 Normal 0.89 0.81 0.05–1.83

Emergent cover (% area) 24 Normal 12 10 0–40

Submerged cover (% area) 24 Normal 43 50 0–100

Floating cover (% area) 27 Normal 26 10 0–100

Fish (presence/absence) 30 15 present, 15 absent
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We calculated a potential misestimate of waterbody pCO2

or pCH4 using the 95% confidence interval of slopes estimated
in the bootstrap regression (Eq. 2).

Potential%Misestimate¼ 2:5%Quantile�1j jþ 97:5%Quantile�1j j
2

�100

ð2Þ

The calculated potential misestimate indicates by how much
the mean pCO2 or pCH4 of the water body might be misestimated
by sampling from a single location in the water body on a given
sampling event. It can be interpreted as the 95% likelihood of a sin-
gle sample location in thewaterbody beingwithinX%of themean
waterbody pCO2or pCH4on that sampling date.

Before testing for relationships between environmental vari-
ables and spatial variability of pCO2 or pCH4, we determined
whether variability (as standard deviation [SD]) among samples
collected over space was greater than variability of the center
technical replicates, in effect testing whether any spatial vari-
ability we measured was greater than pure error. In over 85% of
the samples for both pCO2 and pCH4, the variability in center
replicates was less than variability across the three sampling
locations in the waterbody (71 out of 84 for pCO2 and 74 out
of 84 for pCH4; Supporting Information Fig. S2) when samples
were collected at multiple locations. When technical variability
was higher than variability across sampling locations within a
waterbody, it was typically when mean pCO2 or pCH4 was low
(and thus any variability among technical replicates would
appear greater) or the spatial variability was low relative to the
mean. As such, our sampling approach accurately reflects spa-
tial variability and is not instead driven by pure error.

To estimate the relative spatial variability of pCO2 or pCH4

in waterbodies, we used residuals of the linear relationship
log(SDpCO2 or pCH4) � log(meanpCO2 or pCH4) for each waterbody
on each sampling day (Supporting Information Fig. S2).We
then used univariate linear mixed effects models to test the
relationship between each waterbody characteristic and the
pCO2 or pCH4 residual, with waterbody as a random effect.
Models were constructed using the lme4 and lmerTest packages
(Bates et al. 2015; Kuznetsova et al. 2017). Conditional and
marginal R2 values for each model were calculated using the
sjstats package (Lüdecke 2021). Two ponds (Gibson Pond and
Mud Pond) were excluded from the spatial variability analysis
as sampling was only conducted in the waterbody center. We
also conducted a multivariate analysis to identify the best com-
bination of variables to use to identify systems that might be
more or less variable following the same approach described
previously for mean pCO2 or pCH4, but instead using linear
mixed effects models with the addition of waterbody as a ran-
dom effect to account for repeated measures.

Temporal variability in pCO2 and pCH4

We used a similar bootstrap approach as described for spa-
tial variability to quantify the uncertainty in mean pCO2 and

pCH4 associated with sampling each waterbody only once. In
the bootstrap regression we used the waterbody mean pCO2

or pCH4 on a randomly selected date as the response variable
and mean of all pCO2 or pCH4 values from three sampling
dates in that waterbody as the independent variable. Poten-
tial misestimate of pCO2 or pCH4 is determined using Eq. 2.
It can be interpreted as the 95% likelihood of a single pCO2

or pCH4 sampling event being within X% of the mean pCO2

or pCH4 of three summer sampling events. We repeated the
bootstrap approach a third time, using a random, single sam-
ple from each waterbody compared against the mean of all
samples collected in space and time to calculate the potential
misestimate of mean summer pCO2 or pCH4 from a single
grab sample.

We used similar univariate and multivariate approaches
to identify predictors of temporal variability as described
previously for mean pCO2 or pCH4 and spatial variability in
pCO2 or pCH4, but here we calculated residuals for pCO2

and pCH4 for each waterbody using the mean pCO2 and
pCH4 from each of the samples collected per waterbody on
each sampling date (Supporting Information Fig. S3) and
again used multiple linear regression. One pond (Mud Pond)
was only sampled twice and was therefore excluded from
these calculations.

Results
Waterbody characteristics

The sampled ponds and shallow lakes had a large range of
physical, chemical, and biological characteristics (Table 1).
There were several significant correlations between these
characteristics (Supporting Information Table S2), including
strong positive correlations between perimeter, fetch, and
surface area (r ≥ 0.90, p < 0.01). Notably, surface area and
maximum depth were not correlated (r = �0.07; p = 0.71;
df = 28). The two largest waterbodies (22 Bay and Simpson
Bay; > 100,000 m2) and three smallest (E4, Fizzy, Karls Pond;
< 1000 m2) all have a similar maximum depth (0.64–1.25 m).
The system with the greatest maximum depth was Lost Pond
(4.8 m) which has a surface area (6354 m2) similar to the
dataset median (6227 m2).

Environmental variables related to pCO2 and pCH4

On average, waterbodies had mean pCO2 (3094 � 3576
μatm; mean � SD; Fig. 2a) nearly 7� higher than the mean
pCO2 of air samples (446.0 � 40.0 μatm) indicative of super-
saturation and net release of CO2 to the atmosphere. Six
waterbodies had mean pCO2 below atmospheric concentra-
tion on all three sampling events indicating they were
net CO2 sinks. Eight waterbodies had variable source-sink
behavior across sampling dates, and several had variable
source-sink behavior at different locations in the system on
individual sampling dates. pCH4 ranged across several orders
of magnitude from a low of 199.5 μatm in Simpson Bay to a
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high of 38,803 μatm in Wild Pond, though all systems had
partial pressures of CH4 (mean pCH4 = 6350 � 10,578 μatm;
Fig. 2B) higher than the atmosphere (2.43 � 0.66 μatm)
across all sampling dates and sampling locations. Generally,
waterbodies with high mean pCO2 had high mean pCH4

(Supporting Information Fig. S1).
We identified several physical and biological variables that

related to pCO2 and pCH4 (Supporting Information Table S9;
Fig. 3). Waterbodies with smaller surface areas had higher pCO2

(r2 = 0.25; p = 0.01; df = 28) and pCH4 (r2 = 0.16; p = 0.03;
df = 28) than those with larger surface areas. The percent area
of the waterbody covered in floating vegetation positively
related to both pCO2 (r2 = 0.32; p < 0.01; df = 25) and pCH4

(r2 = 0.22; p = 0.01; df = 25). Emergent vegetation cover was
positively related to pCO2 (r2 = 0.27; p = 0.01; df = 22) but not
pCH4. The variable that mostly strongly predicted pCO2 was
dissolved P concentration (r2 = 0.55; p = 0.01; df = 9), which
had a positive relationship, though the sample size was rela-
tively low (n = 11) compared to most other measures. Fish pres-
ence related to both CO2 and CH4 concentrations: pCO2 was

almost four times higher in fishless systems (4765 � 4272 μatm
CO2) than in those with fish (1423 � 1502 μatm CO2; p < 0.01;
df = 28) and pCH4 was nearly five times greater in fishless sys-
tems (10,545 � 13,688 μatm CH4) relative to those with fish
(2156 � 2597 μatm CH4; p = 0.03; df = 28).

The best-approximating multivariate model to describe
waterbody mean pCO2 included DOC (β = 0.28; SE = 0.02),
fish presence (β = �0.72; SE = 0.29), and pH, but the pH effect
was not well estimated (β = �0.27; SE = 0.14; R2 = 0.30;
p < 0.01; df = 25; Supporting Information Table S3). The addi-
tion of various primary producers did not improve the model’s
ability to predict mean pCO2 (Supporting Information
Table S3). The best-approximating multivariate model to
describe waterbody mean pCH4 was fish presence alone
(β = �0.57; SE = 0.22; Supporting Information Table S4). The
addition of Chl a did not improve the model, but the addition
of floating and submerged plant cover did (Supporting Infor-
mation Table S4). Floating plant cover was positively associ-
ated with pCH4 (β = 0.25; SE = 0.11) as was submerged plant
cover (β = 0.27; SE = 0.12).

Fig. 2. Partial pressures of carbon dioxide (A; pCO2) and methane (B; pCH4) in surface water of 30 ponds and shallow lakes in temperate areas of
Europe and North America. Measurements were made in the summers of 2018 and 2019. Each point indicates mean gas partial pressure in a single
waterbody on a single sampling date. The error bars represent the SD in pCO2 or pCH4 in space on that sampling date. Dashed lines indicate mean atmo-
spheric gas concentration across all sampling events with points above the line indicative of gas release to the atmosphere and points below indicative of
uptake by the waterbody. In cases where error bars are hidden, the SD is very small (there is no SD for Gibson Pond or Mud Pond as samples were col-
lected from a single location in these waterbodies).
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Spatial variability in pCO2 and pCH4

Bootstrap regressions indicated that randomly sampling
from a single location in small waterbodies results in low
(13%) misestimates in pCO2 (Table 2). This relatively low spa-
tial variability in pCO2 was further evidenced by the lack of
any environmental variables that were significantly correlated
with pCO2 residuals (Supporting Information Table S10).
There was slightly more spatial variability in pCH4 (35%

potential misestimate in space; Table 2), and we found that
spatial variability was negatively correlated with water depth
(R2 = 0.13, p < 0.01, n = 84; Fig. 4A), and positively correlated
with Chl a concentration (R2 = 0.08, p = 0.05, n = 57; Fig. 4B)
and conductivity (R2 = 0.08, p = 0.02, n = 81; Fig. 4C). Using
a multivariate approach, the best model to approximate pCO2

variability in space was the null model (R2 = 0.00, p = 0.17,
n = 81; Supporting Information Table S5), while the best

Fig. 3. Relationships between mean partial pressures of carbon dioxide (pCO2) and waterbody (A) surface area, (B) perimeter, (C) fetch, (D) dissolved
phosphorus concentration, (E) emergent cover, and (F) floating cover, and between partial pressures of methane (pCH4) and waterbody (G) surface area,
(H) perimeter, and (I) floating cover. Only relationships with p ≤ 0.05 shown, other relationships with p > 0.05 in Supporting Information Table S9. Mea-
surements were made in 30 ponds and shallow lakes in temperate areas of Europe and North America in the summers of 2018 and 2019.
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model to describe variability of pCH4 in space was maximum
depth alone (β = �0.13; SE = 0.05; Supporting Information
Table S6). Primary producers did not improve either model
(Supporting Information Tables S5, S6).

Temporal variability in pCO2 and pCH4

The variability of dissolved gas concentrations was greater
in time than space. Bootstrap regressions reveal potential mis-
estimation of summer mean pCO2 by up to 26% and pCH4 by
up to 64.5% if sampling is only conducted on a single date
(Table 2). Taken a step further, the potential misestimate
increases to 44% for pCO2 and 83.5% for pCH4 (Table 2) if
only a single sample from a random location in the waterbody
on a single sampling event (the combined effects of spatial
and temporal variability) is used to estimate mean summer
pCO2 or pCH4.

Temporal variability in pCO2 was negatively correlated with
waterbody perimeter (r2 = 0.11, p = 0.05; df = 27; Fig. 5A),

Chl a concentration (r2 = 0.21, p = 0.03; df = 17; Fig. 5B), and
percent emergent cover (r2 = 0.15, p = 0.04; df = 21; Fig. 5C).
There was no relationship between temporal variability in
pCO2 and the length of time between the first and last sam-
pling event. Temporal variability of pCH4 decreased as the
waterbody maximum depth (r2 = 0.18, p = 0.01; df = 27;
Fig. 5D) and percent submerged cover increased (r2 = 0.20,
p = 0.02; df = 21; Fig. 5E), and was positively correlated with
sampling time frame (r2 = 0.24, p < 0.01; df = 27; Fig. 5F).

The multivariate model with the lowest AICc score for
describing variability of pCO2 over time was perimeter alone,
but the effect of perimeter was not well estimated (β = �0.11;
SE = 0.07; Table S7). The addition of Chl a improved the null
model, and Chl a was negatively correlated with variability of
pCO2 over time (β = �0.21; SE = 0.07). Similarly, the addition
of emergent cover improved the model and emergent cover
was negatively associated with variability of pCO2 over time
(β = �0.11; SE = 0.05). Inclusion of floating and submerged

Table 2. Results of bootstrap regressions (n = 1000 iterations) of randomly sampled partial pressures of carbon dioxide (pCO2) or
methane (pCH4) in space and time relative to mean pCO2 or pCH4. “Space” refers to selecting a pCO2 or pCH4 value from a single loca-
tion in the waterbody relative to the waterbody mean pCO2 or pCH4 on a given date, “Time” refers to randomly selecting waterbody
mean pCO2 or pCH4 on a single date relative to the seasonal mean pCO2 or pCH4, and “Time and Space” refers to selecting a single
pCO2 or pCH4 sample as representative of the seasonal mean. Potential misestimate is calculated as described in Eq. 3. Measurements
were made in 30 ponds and shallow lakes in temperate areas of Europe and North America in the summers of 2018 and 2019.

R2 p-value
Mean

intercept
Intercept
95% CI

Mean
slope

Slope
95% CI

Min.
slope

Max.
slope

Potential
% misestimate

Space pCO2 0.92 < 0.01 �2.17 �217.2 to 245.8 1.00 0.87–1.13 0.83 1.16 13

Space pCH4 0.90 < 0.01 �37.37 �1302 to 1370 1.00 0.63–1.33 0.56 1.44 35

Time pCO2 0.90 < 0.01 7.75 �396.2 to 410.3 0.99 0.73–1.25 0.61 1.33 26

Time pCH4 0.93 < 0.01 3.91 �2123 to 1829 0.99 0.39–1.68 0.35 1.76 64.5

Time and Space pCO2 0.92 < 0.01 �0.19 �403.0 to 423.3 1.00 0.72–1.31 0.62 1.50 44

Time and Space pCH4 0.87 < 0.01 �17.96 �3015 to 2236 0.99 0.36–2.03 0.21 2.42 83.5

Fig. 4. Relationships between spatial variability of the partial pressure of methane (pCH4) and maximum depth (A), conductivity (B), and Chl a (C).
Only relationships with p ≤ 0.05 shown, other relationships with p > 0.05 in Supporting Information Table S10. The (1jWaterbody) indicates inclusion of
waterbody as a random effect in the model. R2 values shown are the marginal R2 of the model. Measurements were made in 30 ponds and shallow lakes
in temperate areas of Europe and North America in the summers of 2018 and 2019.
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plant cover did not improve the model (Supporting Informa-
tion Table S7). For temporal variability of pCH4 the best-
approximating model was maximum depth alone (β = �0.16;
SE = 0.04) and primary producers did not improve the model
(Supporting Information Table S8).

Discussion
Identifying drivers of CO2 and CH4 concentrations in small

and shallow waterbodies is critical for accurate inclusion of
these systems in global CO2 and CH4 budgets. Determining
how these systems vary in space and time will guide targeted
sampling and further reduce error in our global estimates, and
thus improve accuracy in scaling. Here, we found a mix of
source/sink behavior for pCO2 across waterbodies, sampling
dates, and locations within the waterbody, whereas all
waterbodies were supersaturated in CH4. Both pCO2 and pCH4

spanned 4 orders of magnitude across the 30 waterbodies

representing a broad geographic range. We took advantage of
this variability to identify relationships between physical,
chemical, and biological parameters and CO2 and CH4 con-
centration and variability, providing important insight into
which systems may be the most variable.

Environmental variables related to pCO2 and pCH4

Despite our focus on shallow and relatively small systems,
we still observed inverse relationships between waterbody size
(i.e., surface area, fetch, perimeter) and pCO2 and pCH4 similar
to relationships observed across a wider range of waterbody
sizes (Holgerson and Raymond 2016; Deemer and Hol-
gerson 2021). In smaller lentic systems it can be unclear
whether the negative relationships between size and CO2 or
CH4 concentrations are driven by physical processes or by
chemical/biological drivers of CO2 or CH4 concentration that
can co-vary with size. In our dataset there were correlations
between waterbody size (i.e., surface area, perimeter, fetch)

Fig. 5. Relationships between temporal variability of the partial pressure of carbon dioxide (pCO2) and waterbody perimeter (A), Chl a (B), and % emer-
gent cover (C) and between temporal variability of the partial pressure of methane (pCH4) and maximum waterbody depth (D), percent submerged
cover (E), and the number of days between the first and last sample collected (F). Only relationships with p ≤ 0.05 shown, other relationships with
p > 0.05 in Supporting Information Table S11. Measurements were made in 30 ponds and shallow lakes in temperate areas of Europe and North America
in the summers of 2018 and 2019.
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and proxies of nutrient and organic matter loading (i.e., DOC,
total P, dissolved P concentration), but only dissolved P
predicted pCO2 and none of the chemical variables measured
in this study predicted pCH4. Together, this indicates that phys-
ical and biological factors may have a greater effect than chemi-
cal factors (or bulk chemical pools) on CH4 concentrations in
small freshwater systems. This conclusion is supported by evi-
dence from boreal lakes < 0.07 km2 in Finland, where water col-
umn stability and turbulent mixing in smaller systems were
more important than total organic carbon (TOC) loading from
the surrounding landscape in predicting CH4 (Kankaala
et al. 2013), despite co-variance between lake size and TOC.

Dissolved P concentration had the strongest relationship
with pCO2, with highest pCO2 when dissolved P concentra-
tion was highest (although dissolved P concentration was only
measured in 11 waterbodies). Multivariate analysis included
DOC and fish presence in the best-approximating model (dis-
solved P was not included in multivariate analysis due to small
sample size). We are unable to determine the underlying
mechanisms behind these relationships but can suggest two
non-mutually exclusive hypotheses. First, systems with high
organic matter loading (whether from internal or external
sources) are likely to have high rates of sediment respiration
and release of CO2, DOC, and dissolved P to the water col-
umn. Second, groundwater and runoff derived dissolved P,
DOC, and CO2 loaded to small lentic systems could be concur-
rent (Marcé et al. 2015; Peacock et al. 2019). Jensen et al.
(2022) report a positive relationship between DOC and dis-
solved CO2 concentration and a negative relationship between
δ18O (indicative of groundwater influence) and dissolved CO2

concentration in small agricultural reservoirs, indicating the
importance of runoff and groundwater in DOC loading and
CO2 production.

Vegetation can also regulate CO2 and CH4 in aquatic sys-
tems (Bodmer et al. 2021; Bastviken et al. 2023). We found
that the percent of the waterbody covered with floating vege-
tation related positively to both pCO2 and pCH4 and the per-
cent of the waterbody area covered with emergent vegetation
was positively related to pCO2. Emergent cover had a strong
negative correlation with surface area, but the addition of
emergent cover to the best-approximating model—which did
not include waterbody area—improved the model, hinting
that vegetation may be more important than surface area in
regulating pCO2 in small waterbodies. On the other hand, the
areal coverage of floating vegetation was not correlated with
any other environmental variables measured (Supporting
Information Table S2), indicating a clear effect where floating
vegetation increased both pCO2 and pCH4. Floating plants can
reduce gas exchange between the water column and the atmo-
sphere, preventing diffusion of O2 into the water column and
allowing for a buildup of CO2 and CH4 (Goodwin et al. 2008;
Kosten et al. 2016; Rabaey and Cotner 2022). Alternatively,
floating plants can reduce CH4 concentrations in surface water
via oxygen loss through their roots and by providing surface

area for methanotrophic bacteria. The balance of reduced dif-
fusion due to physical obstruction with enhanced oxidation
via root transfer ultimately dictates how floating vegetation
will alter surface water CH4 concentrations. In this study, both
pCO2 and pCH4 increased as floating plant cover increased
suggesting reduced gas transfer drove this pattern.

Fish presence was an important indicator of average
waterbody pCO2 and pCH4, which approximately four and
five times higher, respectively, in fishless waterbodies com-
pared to those with fish. Although there is evidence that fish
can alter aquatic CO2 and CH4 cycling (Schindler et al. 1997;
Atwood et al. 2013; Devlin et al. 2015) it is also possible that
fish presence may simply correlate with other factors that reg-
ulate pCO2 and pCH4 (e.g., anoxia-driven winter fish kills). We
can conclude that fish presence is a useful variable to measure
for predicting pCO2 and pCH4 in ponds and shallow lakes and
more work to quantify how fish alter pCO2 and pCH4 is
needed.

Spatial variability in pCO2 and pCH4

Results of this study support past evidence that spatial vari-
ability in lentic systems < 10 km2 may be important for accu-
rate quantification of pCH4 (Wik et al. 2016; Natchimuthu
et al. 2017), with the possibility of misestimating waterbody
mean pCH4 by up to 35% if only one location in the
waterbody is sampled. Spatial variability in pCO2 appears less
important in these small waterbodies and accurate estimates
of waterbody pCO2 can likely be made from a single location.

Only three variables related to the spatial variability of pCH4,
and model selection indicates spatial variability of pCH4 is best
described by the maximum depth of the system, with less vari-
ability in deeper waterbodies. We expected the opposite: that
deeper systems would be more spatially variable as littoral zones
may have greater CH4 concentrations than deeper waters
(Hofmann 2013; Schmiedeskamp et al. 2021). We can test
whether basin shape is related to spatial variability in pCH4 using
the ratio of surface area to maximum depth. Doing so, we found
no relationship between pCH4 variability and this ratio (marginal
R2 < 0.01). An alternative explanation for the observed negative
relationship between depth and spatial variability considers strat-
ification dynamics, which can be associated with maximum
depth (Holgerson et al. 2022). Deeper systems with stronger
stratification may become anoxic in bottom waters, favoring
CH4 production, but potentially trapping this CH4 beneath the
thermocline, with little exchange of CH4 with surface waters; in
contrast, shallow waters may have both more horizontal and
vertical mixing that could create more spatial heterogeneity in
CH4 concentration. Disruption of stratification is an important
driver of spatial variability in CH4 concentrations in larger sys-
tems (Paranaíba et al. 2018, 2021), and may be similarly impor-
tant in small lentic systems.

Spatial variability in pCH4 increased with Chl a concentration
and conductivity in univariate regressions, but in multivariate
analysis, neither was included in the best model. Chl a may
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indicate increased organic matter loading in some areas (with
subsequent spatial variability in CH4 production) or if produc-
tion is synchronous throughout the waterbody, areas with
anoxic conditions may favor slightly higher CH4 production,
again leading to relatively higher spatial variability than systems
with lower planktonic primary production.

Temporal variability in pCO2 and pCH4

The potential for misestimating pCO2 or pCH4 over time
was nearly twice the potential of misestimating pCO2 or pCH4

in space and was more important for pCH4 (64.5% potential
misestimate) than for pCO2 (26% potential misestimate). Con-
sidering only univariate regressions, both pCO2 and pCH4

were associated with waterbody physical and biological char-
acteristics, with greater variability in relatively smaller systems
with less primary producer biomass. Temporal variability of
pCO2 was associated with perimeter, Chl a, and emergent
cover, but perimeter was not important when using a multi-
variate statistical approach. Temporal variability in pCH4 was
linked with maximum depth and submerged plant cover, but
maximum depth alone was the best-approximating model fol-
lowing multivariate model selection.

Shallower systems had greater temporal variability in pCH4

(R2 = 0.18, p = 0.01, df = 27, Fig. 5D), again hinting at the role
of mixing in driving variability. If a waterbody remains strati-
fied or mixes daily throughout the summer, it is likely to dis-
play relatively low variability in surface water dissolved CH4

concentration. Those that mix intermittently (e.g., once a week
or once per month) have longer time periods in which dis-
solved oxygen can be depleted and CH4 can build, and once
mixing occurs, dissipation of this CH4 will likely take several
days, leading to fluctuating periods of high and low surface
pCH4. Maximum depth plays an important role in regulating
mixing as deeper waters mix less frequently (Holgerson
et al. 2022). Vegetation may also contribute to greater stratifica-
tion either by blocking wind (emergent vegetation) or through
shading and dissipating kinetic wind energy (submerged vege-
tation; Herb and Stefan 2004; Chimney et al. 2006; Andersen
et al. 2017). In our mixed effects models, temporal variability
in pCH4 was negatively associated with greater submerged
cover (though it did not meet criteria to be considered as an
informative parameter). However, this negative relationship
hints at vegetation’s role in reducing mixing.

We only measured dissolved CH4 in this study, which con-
tributes to diffusive CH4 emissions, and it is important to note
that there may be similarly high temporal variability in
ebullitive CH4 emissions, which can contribute between 3%
and 100% of the total CH4 flux in waterbodies < 0.05 km2

(estimated using data from Rosentreter et al. 2021b). The same
factors that predict temporal variability of dissolved CH4 are
also likely to be important for diffusive CH4, with stratifica-
tion and mixing controlling rates of production of CH4 that
can be released via ebullition, and plants possibly providing a
physical block between ebullition and the atmosphere. The

methods we present here may be useful for identifying drivers
of spatial and temporal variability in ebullitive CH4 flux from
small waterbodies.

Implications for future upscaling of small waterbody CO2

and CH4 emissions
Understanding drivers of spatial and temporal variability of

pCO2 and pCH4 will inform better sampling strategies and
help improve models that upscale greenhouse gas emissions
from inland waterbodies. Here, we show that pCO2 and pCH4

within small waterbodies vary almost twice as much in time
as in space. Furthermore, a single sample from a single loca-
tion can misestimate mean seasonal pCO2 and pCH4 by up to
44% for pCO2 and up to 83.5% for pCH4. These misestimates
demonstrate the importance of repeated sampling over time,
followed by greater spatial coverage in small waterbodies.

There is still debate over the most appropriate sampling res-
olution in space for accurate estimation of dissolved CO2 and
CH4 concentrations and diffusive flux with the atmosphere.
For example, recent work in tropical reservoirs in Brazil
(Paranaíba et al. 2018), a hemiboreal lake in southern Sweden
(Natchimuthu et al. 2017), and subarctic lakes in northern
Sweden (Wik et al. 2016) recommend between 6 and 300 sam-
pling locations per km2. Balancing a reasonable number of
samples with accurately incorporating spatial variability is
challenging. The low spatial variability of pCO2 in ponds and
shallow lakes recorded suggests a single sample can represent
the entire waterbody on a given date. As pCH4 was slightly
more variable in space, more than one location in the
waterbody should be sampled. While improving spatial resolu-
tion of CO2 and CH4 dynamics in small waterbodies will
improve upscaling estimates, this is of secondary importance
to improved temporal resolution to improve pCO2 and pCH4

estimates from small lentic systems.
Sampling a waterbody repeatedly over time is necessary to

accurately quantify seasonal patterns of dissolved CH4 and
CO2 concentrations, though this is more important for CH4

than CO2. Most measurements of dissolved gas concentrations
and fluxes in temperate systems are made in the summer, and
seasonal studies are often limited to a round of sampling in
the spring, summer, and fall. This approach misses intra-
seasonal variability, in addition to missing the transition
period between seasons (i.e., the “shoulder seasons”) when
important processes such as macrophyte die-off or spring thaw
occur. For example, CH4 emissions over a 2-week period in
the late spring accounted for nearly 20% of annual CH4 emis-
sions from a 2.4 km2 waterbody (Waldo et al. 2021), and CO2

and CH4 emissions during the ice-melt period represent 17%
and 27% of annual emissions from northern lakes (Denfeld
et al. 2018), highlighting the importance of short time periods
between sampling events. Natchimuthu et al. (2017) suggest
at least 8 sampling days during the ice-free season are needed
to be within 20% of the true measure and Wik et al. (2016)
suggest 11 sampling days. We recommend frequent sampling
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particularly in smaller systems due to the relationship of
increasing temporal variability of pCH4 and mean pCH4 as sys-
tem size decreases.

Small and shallow waterbodies are known to release signifi-
cant quantities of CO2 and CH4 to the atmosphere (Holgerson
and Raymond 2016; Rosentreter et al. 2021a). Here, we have
shown that the smallest of these systems also have the highest
variability in pCO2 and pCH4 across space and time. Physical
characteristics and dissolved nutrients appear to be the most
important variables for understanding both mean pCO2 and
pCH4 and variability of pCO2 and pCH4 in space and time.
Dissolved P concentration is particularly useful for under-
standing CO2 dynamics—we found relationships between dis-
solved P concentration and mean pCO2, spatial variability in
pCO2, and temporal variability in pCO2. Physical features asso-
ciated with regulation of mixing patterns, such as maximum
depth, are important for predicting pCH4 and variability in
pCH4 and merit further investigation. Identifying variables to
predict mean pCH4 and pCO2 and variability of pCH4 and
pCO2 over space and time in small waterbodies will inform
future study designs and targeted sampling of variable sys-
tems, and also reduce uncertainty in upscaling global green-
house gas emissions.

Data Availability Statement
The dataset used in this study can be accessed via the Figshare

Repository (https://figshare.com/articles/dataset/Dataset_for_
Spatial_and_temporal_variability_in_greenhouse_gas_partial_
pressures_in_shallow_lakes_and_ponds/19495121) and the code
used for statistical analysis is available on Github (https://
github.com/nray17/PONDING-GHG-R-Code).
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