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Lack of fire has limited physiological impact on old-growth
ponderosa pine in dry montane forests of north-central Idaho
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Abstract. Reduced frequency of fire in historically fire-adapted ecosystems may have
adverse effects on ecosystem structure, function, and resilience. Lack of fire increases stand
density and promotes successional replacement of seral dominant trees by late-successional,
more shade-tolerant species. These changes are thought to increase competition for limited
resources among trees and to increase physiological stress of dominant, fire-adapted species.
However, there has been little effort to directly investigate effects of lack of fire on the
physiological status of old trees, especially in unlogged, protected forests. At four remote sites
in the Selway-Bitterroot region of Idaho, we tested whether the physiological status of
dominant old-growth ponderosa pine trees in repeatedly burned stands (three to four 20th-
century wildfires at roughly historical fire frequency) differs from trees in paired stands not
burned for at least 70 years. We hypothesized that trees in relatively unburned stands would
exhibit signs of physiological stress due to increased competition for resources in higher-
density stands. Needle chemistry and morphological variables, fine root production,
mycorrhizal infection rates, depth of soil water resources, and recent basal area growth rates
were measured as indictors of competition-induced stress. Contrary to predictions, needle
carbon isotopic ratio (d13C) and fine root production, variables related to water stress, were
slightly higher in repeatedly burned stands driven by site-specific responses, and there were no
significant biological differences between trees in repeatedly burned stands vs. stands
unburned for at least 70 years in the remaining variables. Our results raise the possibility that
dominant ponderosa pine trees in uneven-aged forests may be more resilient to increased stand
density associated with the lack of fire than previously thought. If so, our results have
implications for the management of uneven-aged, old-growth forests.

Key words: fire exclusion; fire suppression; old growth; physiology; Ponderosa pine; resilience;
succession; unmanaged forests.

INTRODUCTION

Reduced frequency of fire in historically fire-adapted

ecosystems is thought to have adverse effects on

ecosystem structure, function, and resilience (Arno and

Fiedler 2005). In the western United States, ponderosa

pine (Pinus ponderosa) forests are a widespread land-

scape feature that historically experienced relatively

frequent fire, although specific fire regimes vary across

the range (Oliver and Ryker 1990, Veblen 2003,

Schoennagel et al. 2004). In low-severity and mixed-fire

regime forests of the inland northwestern United States,

ponderosa pine is considered an early successional, or

seral, dominant, maintained by fires that reduce shade-

tolerant, later successional competitors such as Douglas-

fir (Pseudotsuga menziesii ) or grand fir (Abies grandis)

(Pfister et al. 1977, Steele et al. 1981, Oliver and Ryker

1990). Stand densities and the densities of shade-tolerant

competitors have increased in many ponderosa pine

stands that have not burned at historical frequencies

(Arno 1988, Agee 1993, Covington and Moore 1994a,

Keane et al. 2002, Fulè et al. 2004, Keeling et al. 2006).

However, recruitment increases after grazing (Bakker

and Moore 2007) or logging (Naficy et al. 2010) may

also contribute to these changes. These density and

species changes are considered anthropogenic, because

the cessation of frequent fire is largely a result of over a

century of fire-suppression policies. The effect of lack of

fire on mature and old-growth ponderosa pine forests is

of particular interest and concern because of the value

and relative rarity of these forests (Kolb et al. 2007).

In the absence of fire, higher stand densities and

increased competition for resources are thought to

induce physiological stress in mature ponderosa pine

trees, increasing mortality risk and the probability of

severe fire (National Fire Plan 2001 [as cited in Veblen

2003]; Skov et al. 2004, Wallin et al. 2004, Arno and

Fiedler 2005, Sala et al. 2005, Kolb et al. 2007, Fettig et

al. 2007). However, effects of lack of fire on mature trees
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are poorly understood for several reasons. First,

negative effects of fire deficiency on trees are commonly

inferred from measured positive effects of various fire

surrogate treatments, usually thinning or combined

thinning/prescribed burning treatments (Donner and

Running 1986, Kolb et al. 1997, Feeney et al. 1998,

Stone et al. 1999, Latham and Tappeiner 2002, Wallin et

al. 2004, Sala et al. 2005). However, it is not clear that

inferences from such studies are valid for predicting

consequences of reduced fire frequency in relatively

undisturbed forests because thinning and prescribed fire

treatments are generally implemented with the goal of

reducing harm to mature trees. Therefore the severity of

negative effects such as heat damage to needles, buds,

cambial cells, and fine roots (Agee 1993) may be greater

in natural wildfire than from fire surrogate treatments.

In any case, the short time scale of many fire surrogate

studies does not allow for the observation of the long-

term balance of positive and negative responses. Second,

long-term studies of growth in fire-excluded stands

(Sutherland 1983, Biondi 1996) generally lack parallel

measurements in nearby repeatedly burned control

stands. Finally, because recruitment after logging may

increase stand density over and above increases in

unlogged stands (Laudenslayer and Darr 1990, Kauf-

mann et al. 2000, Stephens 2000, Naficy et al. 2010)

there is a need for studies in unlogged forests in order to

separate effects of fire-exclusion from confounding

effects of previous logging. For these reasons, the

assumption of higher physiological stress in trees in

unburned stands requires further testing.

If trees experience higher physiological stress due to

competition in the absence of fire, a series of responses

on biochemistry, morphology, and growth characteris-

tics of leaves, roots, and stems are expected. Needle

chemistry (percent N, C:N, 13C:12C) provides an

integration of the tree’s nutrient and water status.

Needles of trees experiencing competition-induced stress

are expected to have lower percent N (Feeney et al.

1998, Stone et al. 1999, Wallin et al. 2004), higher C:N

ratios (Waring and Schlesinger 1985), and higher C

isotopic ratio (d13C) (Adams and Kolb 2004, Wallin et

al. 2004), the latter due to reduced discrimination

against the heavy C isotope when stomata are closed

during periods of water stress. Values of basic needle

growth characteristics (average needle length, total

needle biomass) are also expected to decrease for trees

with increased competition-induced stress (Feeney et al.

1998, Stone et al. 1999) although these factors will also

be affected by the relative overall biomass allocation to

leaves. Similarly, trees experiencing insufficient water

and nutrient resources are expected to have longer-lived

needles, lower leaf specific area (Reich et al. 1997), more

fine roots (Vogt et al. 1983, Gower et al. 1992), higher

mycorrhizal infection rates (Smith et al. 2005), and tap

deeper water sources (detectable by comparing hydrogen

isotopic signatures in xylem water to soil water samples).

Finally, stemwood (basal area) growth is expected to

decrease in the absence of fire if competition reduces

overall resource availability.
There is great interest in the perpetuation of old

ponderosa pine forests because of their ecological,
scientific and cultural value (Kolb et al. 2007).

Restoration of these forests often focuses on returning
stands to their pre-settlement densities and commonly

assumes that old trees in denser stands that have not
experienced frequent fire are under stress. However, this
assumption has rarely been tested which was the goal of

this study. We sampled old-growth ponderosa pine trees
in paired stands at four remote sites in Idaho, USA.

Each pair consisted of a stand that had not burned for at
least 70 years (‘‘unburned’’) and a stand which burned at

roughly the historic fire-frequency during the 20th
century including a recent fire 12–17 years before

sampling (‘‘repeatedly burned’’). We ask the question:
Do old-growth ponderosa pine trees in relatively

unburned stands show signs of competition-induced
stress compared to trees in repeatedly burned stands?

Because previous results from a larger study that
included these sites showed significantly higher stand

densities (Keeling et al. 2006) and lower available N
(DeLuca and Sala 2006) in unburned stands overall, we

expected to find evidence of competition-induced
physiological stress in unburned stands.

METHODS

Site selection

In 2003, a total of seven remote study sites were located

in unlogged, mid-elevation ponderosa-pine–Douglas-fir
forests within or on the periphery of wilderness areas in

Idaho (see DeLuca and Sala [2006] and Keeling et al.
[2006] for site selection details). For logistical reasons,

four representative sites were chosen for the more
intensive sampling needed for this study (Fig. 1). A

weather station central to these sites reports mean January
high temperatures of 1.48C, mean July high temperatures

of 27.28C, and mean annual precipitation of 76.2 cm. This
region is generally characterized as having a mixed-
severity fire regime (Heyerdahl et al. 2008).

At each of the four sites, a relatively unburned stand
was compared to a repeatedly burned stand. The four

‘‘unburned’’ stands had not experienced fire for .124,
90, 85, and 70 years, respectively. Note that in this

paper, ‘‘unburned’’ means not burned after 1934, but
two out of four of stands labeled ‘‘unburned’’ had one

recorded wildfire before 1934, and one stand had two
recorded fires. In contrast, repeatedly burned stands

experienced three to four 20th-century wildfires at
intervals ranging from 6 to 58 years (mean ¼ 34 years)

with the most recent fire 12–17 years before sampling.
Although the two groups of stands are clearly distinct

based on the criterion of time since fire, the labels
‘‘unburned’’ and ‘‘repeatedly burned’’ are not meant to

imply uniform exposure to fire or time-since-fire within
each category. Tables 1 and 2 show environmental data

fire history, ages of trees sampled, and stand densities,
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for all stands. Density estimates for each stand were

based on measurements in three plots per stand (see

Keeling et al. 2006). Although some physiographic

differences between stands existed, on average there

were no systematic physiographic differences between

unburned and repeatedly burned stands from each site

across the entire study (paired t tests comparing slope,

aspect, and elevation, P , 0.05). Fire histories for all

stands were based on U.S. Forest Service fire maps, field

reconnaissance, and on-site fire scar analyses (see

DeLuca and Sala 2006 and Keeling et al. 2006 for more

detailed methods on fire histories). Note that the last fire

was 12–17 years before the study was initiated; therefore

measurements are not short-term responses to fire. We

cannot determine whether fires were actively suppressed

even in these remote areas, therefore the terms

‘‘unburned’’ and ‘‘repeatedly burned’’ and are not meant

to suggest effects due to human management decisions.

The fire return intervals in our repeatedly burned stands

are within the historical (i.e., pre-1900) range, which can

FIG. 1. Study area and site locations in northern Idaho, USA (RoNR¼ River of No Return).

TABLE 1. Time since fire, physiographic data, and fire histories (based on U.S. Forest Service fire
maps and on-site fire scar analysis) for unburned (UB) and repeatedly burned (RB) stands within
four wilderness forest sites.

Site and
stand

Time since
fire (yr)

Mean aspect
(degrees)

Mean
elevation (m)

Mean
slope

(degrees)
Fire years
since 1880

MC

UB .124 270.0 957 33.3
RB 17 258.0 915 42.3 1910, 1934, 1981, 1987

BR

UB 90 61.3 1665 37.3 1914
RB 12 49.3 1464 29.3 1914, 1944, 1992

MB

UB 85 236.0 1813 27.3 1919
RB 17 250.7 1536 32.7 1919, 1960, 1987

TW

UB 70 88.7 805 32.7 1910, 1934
RB 12 134.7 869 33.3 1910, 1934, 1992
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be more than 25 years for mixed ponderosa pine forests

in the northwest region (Arno 1980, Arno and Allison-
Bunnell 2002, Heyerdahl et al. 2008).

Data collection

In June and July of 2004, an access route across each

stand was chosen. Access routes were divided into 10
sections of equal distance. Within each section, a
location along the route was randomly determined from

which the nearest ponderosa pine was sampled. Trees
visibly affected by disease and insect or fire damage were
excluded from the sample. At each tree, elevation,

aspect, slope, GPS coordinates, and tree diameter at
breast height (dbh; at 1.4 m) were recorded. For needle

chemistry and morphology, one exposed branch was
collected from the mid canopy of every tree using a 12
gauge shotgun aimed at the basal end of the terminal

branch so as to sample all leaf cohorts. A 5.7 cm
diameter steel cylinder was used to collect four soil
samples, at a distance of 3 m in four cardinal directions

from the bole of each tree. At two sites (TW and BR),
short (5 cm) increment cores were extracted from each

tree to measure the hydrogen isotopic ratio in xylem
water. At these sites, four pairs of representative soil
samples for measurement of hydrogen isotopic ratio,

one at shallow depth (5–10 cm) and one at deep depth
(65–70 cm) were taken per burned and unburned stand.

The soil and xylem water isotopic study was repeated in
2006. All soil and branch samples were placed in plastic
resealable bags and stored in a cooler with ice, or in dry-

bags submersed in cold water for the duration of each
field trip. Short-increment cores were stored in water-
tight plastic test tubes. For age estimates and basal area

growth analysis, two complete increment cores to the
pith were extracted from each tree and tree diameter at

coring height was recorded. Cores were taken at

approximately 50 cm height from the ground. The two

cores were taken from opposite sides of the tree,

perpendicular to the direction of the slope. Four bark

depth measurements were taken at coring height using a

bark gauge. In 2006 and 2007, increment cores for

growth analyses were extracted from additional trees at

BR and MB providing additional trees at these sites for

BAI analysis (sample sizes for all variables range from

6–19 trees per stand and are reported in figures).

Sample processing and analysis

Internodes separating annual needle cohorts were

identified and fascicles within each cohort were removed

and counted. Average needle length for each cohort was

measured to the nearest millimeter, and all needles

within each cohort were placed in envelopes, dried for 48

hours at 658C in a drying oven, and weighed. Total

needle biomass was calculated as the sum of the mass of

all the needles on each branch. Ten fascicles from the

one-year-old cohort were randomly selected for estima-

tion of specific leaf area. These 10 fascicles were weighed

separately and leaf area for these needles was calculated

by making a digital image of the needles. Needle area

was calculated from the scanned images. Average

specific leaf area was calculated as total area divided

by total weight. A subset of needles from the year-one

cohort from each branch (one branch per tree) was

selected for needle chemistry analysis. Needles were

ground to a fine powder to pass a 0.3-mm mesh, and

samples were sent to the UC Davis Stable Isotope

Facility for analysis (2 and 8 mg of sample for C and N

analyses, respectively). Needle samples were analyzed

for %N, C:N ratio, and carbon isotopic ratio 13C:12C

(expressed as d13C, the sample ratio minus the ratio of a

known standard 3 1000).

TABLE 2. Time since fire, mean ages of trees sampled for needle analyses and basal area increment
(BAI) analyses, and mean stand densities (based on three plots per stand; see Keeling et al.
2006), for unburned (UB) and repeatedly burned (RB) stands within four wilderness forest sites.

Site and
stand

Time since
fire (yr)

Mean age of trees
Mean density

(Doug fir þ grand fir)
(trees/ha)

Mean total stand
density (trees/ha)

Needle
analyses

BAI
analyses

MC

UB .124 211 (63) 211 (63) 117 (181) 283 (232)
RB 17 211 (48) 223 (32) 75 (66) 192 (14)

BR

UB 90 291 (87) 330 (31) 492a (194) 567a (146)
RB 12 245 (107) 341 (41) 25b (25) 183b (38)

MB

UB 85 141 (19) 338 (12) 50 (66) 325 (115)
RB 17 278 (136) 360 (58) 42 (52) 267 (225)

TW

UB 70 185 (17) 181 (16) 592a (298) 600a (284)
RB 12 166 (12) 166 (11) 25b (43) 92b (101)

Notes: Values in parentheses are standard deviations. Significant differences between stands for
ages and stand densities (P , 0.05) are denoted with different letters.
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Soil samples were filtered and rinsed to remove large

debris. When only root mass remained, conifer roots

were easily distinguished based on color, size, and

morphology. A subsample of roots for each tree was

examined under a microscope and root tips were

categorized visually as infected or not infected by

mycorrhizal fungi and infection rate was expressed as

percent of root tips infected. Roots were then oven-dried

and weighed. The average fine root mass for each tree

sampled was expressed on an area basis and divided by

the stand density (see Keeling et al. 2006) in order to

express the fine root content of the soil on a per-tree

basis. Due to time and cost constraints, analysis of H

isotopic ratio in soil and xylem water was done for two

sites only (MB and TW) in 2004 and 2006. Samples were

sent to the UC Davis Stable Isotope Facility for

measurement of H isotopic ratio.

Increment cores were processed, measured, and cross-

dated, and age estimates for each tree were obtained

following standard procedures (Stokes and Smiley

1968). The recent 10-year (1994–2003) basal area

increment (BAI) was calculated by assuming a circular

area and subtracting the inner basal area interior to 1994

from the total basal area. BAI for the two cores of each

tree were averaged. To control for age-related effects on

growth, trees less than 150 years old and greater than

500 years old were excluded from the BAI analysis.

Statistical analyses

Statistical analyses were carried out in the software

program SPSS 16.0 (IBM, Somers, New York, USA).

Variables were tested for normal distribution using a

Kruskal-Wallis test and samples were tested for homo-

geneity of variance using Levene’s test. Where necessary,

variables were transformed using a log or square-root

function. Differences in mean tree age between repeat-

edly burned and unburned stands were tested using t

tests. Comparison between repeatedly burned and

unburned stands of needle chemistry, needle morphol-

ogy, and root/mycorrhizae variables were analyzed

using two-way ANOVA with site and stand (unburned

and repeatedly burned) as random factors, with stand

nested within site. Recent basal area increment (BAI)

was tested using two-way ANCOVA with site as a

random factor, stand as a fixed factor, and age as a

covariate. For variables that did not pass Levene’s test

after transformation, nonparametric Mann-Whitney U

tests were used. Individual t tests were used to test for

significant differences between stands within sites. Depth

of water sources at MB and TW in 2004 and 2006 were

analyzed separately using two-way ANOVA with

sample location (shallow soil, deep soil, sapwood) and

stand (repeatedly burned, unburned) as fixed factors.

Tests for which there were no overall significant

differences between repeatedly burned and unburned

stands were evaluated using post hoc power tests.

Minimum detectable changes (MDC) at a Type II error

threshold of 1� beta¼ 0.8 were calculated for each test

as described in Elzinga et al. (2001). Minimum

detectable changes at this level of Type II error

probability were converted into effect sizes using the

formula: effect size ¼ MDC/standard deviation. Tests

that were capable of detecting an effect size of 0.75 were

considered to have sufficient power.

RESULTS

Sample sizes varied slightly for each variable mea-

sured and ranged from 6 to 19 trees per stand (sample

sizes are given in figure captions). Unless indicated, all

variables met ANOVA assumptions. Stand densities,

tree ages, total needle biomass, fine root biomass, and

recent BAI were log or square-root transformed to meet

ANOVA assumptions. Otherwise, differences between

repeatedly burned and unburned stands were tested

using a Mann-Whitney U test.

Averaged across all sites, unburned stands had higher

total stand densities (F4,23¼5.332, P¼0.006) and higher

densities of late succession tree species (Douglas-fir plus

grand fir; F4, 23¼8.379, P¼0.001, Table 2). Within sites,

total stand densities were significantly higher in the

unburned stands at BR (t4 ¼ 4.386, P ¼ 0.012, Table 2)

and TW (t4¼2.921, P¼0.043, Table 2). Densities of late

succession species were also significantly higher in the

unburned stands at BR (t4 ¼ 4.127, P ¼ 0.015, Table 2)

and TW (t4 ¼ 4.277, P ¼ 0.013, Table 2).

There were no significant overall differences between

repeatedly burned and unburned stands in needle N

content (F4,70 ¼ 0.971, P ¼ 0.429; Fig. 2a) or C:N ratio

(F4,70 ¼ 0.997, P ¼ 0.415; Fig. 2b). Needle C isotopic

ratio was slightly higher in repeatedly burned stands

overall (F4,70¼ 2.997, P¼ 0.024; Fig. 2c) and recent BAI

was lower in repeatedly burned stands (F6,80¼2.581, P¼
0.025; Fig. 2d) but these results were both driven by

differences at a single site, MB, in C isotopic ratios (t17¼
3.519, P ¼ 0.003; Fig. 2c) and BAI (t26 ¼ 3.259, P ¼
0.003; Fig. 2d). There were no significant differences

between repeatedly burned and unburned stands in the

mean ages of trees used to compare needle characteris-

tics (Mann-Whitney U test, P ¼ 0.650, Table 2) or BAI

(F4,88 ¼ 0.990, P ¼ 0.418, Table 2) and no significant

differences in mean tree ages between stands within any

site (Table 2).

Average needle length was greater in the unburned

stand at BR (t14 ¼ 2.553, P ¼ 0.023) but there was no

significant difference across all sites (F4,67 ¼ 2.058, P ¼
0.096; Fig. 3a). Total needle biomass per branch was

slightly but significantly higher in repeatedly burned

stands overall (F4,68 ¼ 2.548, P ¼ 0.047; Fig. 3b). This

increase was not related to an increase in needle

retention time (i.e., total number of needle cohorts).

There were no significant differences between repeatedly

burned and unburned stands in leaf specific area (F4,67¼
1.131, P¼ 0.349; Fig. 3c). Fine roots on a per-tree basis

were higher in repeatedly burned stands overall (F4,23¼
3.007, P ¼ 0.039; Fig. 4a). This difference was driven

mostly by a large, albeit nonsignificant, difference at TW

December 2011 3231IMPACT OF LACK OF FIRE ON PONDEROSA PINE



(t6¼ 3.082, P¼ 0.166; Fig. 4a). There was no significant

difference between repeatedly burned and unburned

stands in mycorrhizal infection (Mann-Whitney U test,

P ¼ 0.157; Fig. 4b). The nonsignificant finding for

mycorrhizae did not pass our criteria for sufficient

power.

Differences in H isotopic signatures between repeat-

edly burned and unburned stands at TW in 2004 and

MB in 2006 were tested using a Mann-Whitney U test

due to lack of homogeneous variances. There were no

significant differences in H isotopic signature between

repeatedly burned and unburned stands across all

sample categories (surface soils, deep soils, sapwood)

at MB in 2004 (F1,2.017 ¼ 0.271, P ¼ 0.654; Fig. 5a), at

TW in 2004 (Mann-Whitney U test, P¼ 0.214; Fig. 5b),

and at MB in 2006 (Mann-Whitney U test, P ¼ 0.077;

Fig. 5c) H isotopic signatures were higher in sapwood

than in both shallow and deep soils at MB, whereas at

TW sapwood H isotopic ratios were intermediate

between isotopic signatures of shallow and deep soil

samples. There were no data for repeatedly burned

stands at TW in 2006.

To allow inspection of possible effects due to

gradients of different fire histories across sites, sites in

Tables 1 and 2 and Figs. 2–4 are shown in order of

decreasing time since fire in the unburned stand and

decreasing difference in number of fires between the two

stands (see Table 1). There was no evidence of gradient

effects on any of the variables we studied.

DISCUSSION

We hypothesized that mature overstory trees in stands

not burned for at least 70 years would show symptoms

of physiological, competition-induced stress when com-

pared to similar trees in repeatedly burned stands.

Contrary to our hypothesis, we found surprisingly little

evidence of adverse effects of lack of fire on mature

ponderosa pine trees for the variables we measured. The

slightly lower total needle biomass per branch in

unburned stands was the only result consistent with

higher stress conditions in repeatedly burned stands.

Four other needle variables (N concentration (%), C:N

ratio, needle length, and leaf specific area) showed no

significant overall differences between repeatedly burned

and unburned stands. Results for needle d13C, and fine

roots were contrary to the expectation of higher stress in

unburned stands. In the case of d13C, the overall

differences were driven by individual site responses at

FIG. 2. (a) N concentration, (b) C/N, (c) d13C, and (d) recent basal area increment (BAI) in ponderosa pine trees in unburned
stands and repeatedly burned stands at each of four sites and averaged across all sites. Sites are shown in order of decreasing time
since fire in the unburned stand and decreasing difference in number of fires between the two stands (see Tables 1 and 2). Error
bars are confidence intervals. Asterisks (*) mark significant overall differences between unburned and repeatedly burned stands
across all sites (two-way ANOVA with site as a random factor and stand nested within site as a fixed factor, P � 0.05) and
significant differences within sites (t test, P � 0.05). NS stands for nonsignificant result that passed the post hoc power test
(minimum detectable change with effect size �0.75 with beta �0.2). Sample sizes for N concentration, C:N, and d13C are (site
unburned, repeatedly burned): MC 16, 9; BR 10, 9; MB 9, 10; TW 9, 6. Sample sizes for BAI are: MC, 10, 9; BR, 8, 17; MB, 9, 19;
TW, 10, 7.
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MB (Fig. 2c). For fine roots, the difference was very

small and probably not biologically significant. There

was no evidence that trees in unburned stands were

tapping deeper water sources (Fig. 5) as would be

predicted during water stress. Finally, although basal

area growth responses varied from site to site, there was

no overall difference in recent growth between trees in

repeatedly burned vs. unburned stands (Fig. 2d). Based

on the variables measured, our results suggest that lack

of recent fire in unburned stands did not cause

significant physiological stress in mature trees relative

to trees in repeatedly burned stands.

To our knowledge, this is the first study to compare

tree functional variables in unlogged, contemporary,

frequently burned, ponderosa pine stands vs. stands not

subjected to fire for most of the 20th century. By

selecting stands in remote, unlogged forests we elimi-

nated the potential confounding effects of prior logging

on stand conditions, which have been shown to

exacerbate the effects of fire exclusion on stand density

FIG. 3. (a) Needle length, (b) total needle biomass, and (c)
leaf specific area in ponderosa pine trees in unburned stands
and repeatedly burned stands at each of four sites and averaged
across all sites. Sites are shown in order of decreasing time since
fire in the unburned stand and decreasing difference in number
of fires between the two stands (see Tables 1 and 2). Error bars
are confidence intervals. Asterisks (*) show significant overall
differences between unburned and repeatedly burned stands
across all sites (two-way ANOVA with site as random factor
and stand nested within site as fixed factor, P � 0.05) and
significant differences within sites (t test, P � 0.05). NS stands
for nonsignificant result that passed the post hoc power test
(minimum detectable change with effect size �0.75 with beta
�0.2). Sample sizes for all variables (site unburned, repeatedly
burned): MC, 16, 9; BR, 9, 7; MB, 9, 10; TW, 9, 6.

FIG. 4. (a) Mass of fine roots per tree and (b) percentage of
mycorrhizal infection for roots of ponderosa pine trees in
unburned stands and repeatedly burned stands at each of four
sites and averaged across all sites. Sites are shown in order of
decreasing time since fire in the unburned stand and decreasing
difference in number of fires between the two stands (see Tables
1 and 2). Error bars are confidence intervals. Asterisks (*) mark
significant overall differences between unburned and repeatedly
burned stands across all sites (two-way ANOVA with site as
random factor and stand nested within site as fixed factor, P �
0.05) and significant differences within sites (t test, P � 0.05).
NS stands for nonsignificant result which passed the post hoc
power test (minimum detectable change with effect size � 0.75
with beta � 0.2). Sample sizes for all variables (site, unburned,
repeatedly burned): MC, 3, 4; BR, 4, 4; MB, 4, 4; TW, 4, 4.
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(Naficy et al. 2010). Studies in previously logged forests

that test for physiological differences between repeatedly

burned and unburned stands may be more likely to find

larger differences between these stands. Our paired-

stand sample design also allowed us to measure long-

term responses in old, mature trees, rather than short-

term responses in second-growth trees. Despite higher

densities and lower nitrogen availability (DeLuca and

Sala 2006, Keeling et al. 2006), the dominant trees we

sampled in unburned stands may have better access to

light and soil resources than smaller, subdominant

competitors. In contrast to our results, studies in

second-growth, relatively even-aged stands, especially

short-term studies before and after stand manipulations,

generally record large effects due to stand density

changes, because residual trees are released from the

greater competitive effects between trees of the similar

age and size (Donner and Running 1986, Kolb et al.

1997, Stone et al. 1999, Latham and Tappeiner 2002).

Such treatments often reduce both density and overall

basal area. At our sites, repeatedly burned stands had

lower densities in the small size classes, but did not have

significantly lower overall basal area (Keeling et al.

2006). Therefore, competitive effects on the well-

established dominant trees in our unburned stands

may have been much smaller than would be the case

in manipulated studies.

The interpretation of our results deserves caution for

several reasons. Finding suitable paired stands in remote

unlogged forests posed a considerable challenge and

unavoidably constrained our design and sampling (see

DeLuca and Sala [2006] and Keeling et al. [2006] for

further discussion). Repeatedly burned stands in un-

logged forests are extremely rare in the landscape and

paired unburned stands are unavoidably variable in how

long they have escaped fire. Even so, our design allowed

the comparison of stands not burned for 70 to .124

years with stands that experienced repeated fire at

roughly historical frequencies (from one to four fires)

during the same time period. Notably, no gradient-

driven pattern emerged when sites were sorted by time

since fire in the unburned stand or as a function of the

number of additional 20th century fires in the repeatedly

burned stands. In other words, physiological stress in

the unburned stands was unrelated to time since fire or

number of fires missed. Our focus on remote sites also

limited the number of variables we could measure. For

example, we were not able to carry the heavy

instruments necessary to make gas exchange measure-

ments. However, recent basal area growth, a variable

that integrates overall physiological response, did not

provide evidence for more stressful conditions in

unburned stands. Therefore, gas exchange differences

between stands, if present, apparently were not signif-

icant enough to affect overall growth. Finally, the

overall number of sites and our sample sizes within sites

were limited. Ideally, more sites with paired stands and

more intensive sampling within stands would increase

the confidence of findings of no difference between

stands. However, for the variables that we measured,

power tests indicated that our sampling was adequate to

detect true differences that were reasonably small with

FIG. 5. Deuterium isotope ratio (d2H) values in shallow soil, deep soil, and sapwood of ponderosa pine trees in unburned
stands and repeatedly burned stands at (a) MB in 2004, (b) TW in 2004, (c) MB in 2006, and (d) TW in 2006. Error bars are
confidence intervals. Sample sizes (shallow, deep, sapwood): MB 2004, unburned, 5, 5, 6; repeatedly burned, 4, 3, 5; TW 2004,
unburned, 6, 5, 5; repeatedly burned, 5, 5, 6; MB 2006, unburned, 4, 7, 5; repeatedly burned, 5, 5, 5; TW 2006, unburned, 4, 3, 6.
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moderate, but acceptably low probability of failure of

detection (Type II error). More research with higher

sample sizes is needed in northwest ponderosa pine

forests to confirm these results.

There are other inherent challenges involved in

studying wildfire in unmanipulated stands (van Mant-

gem et al. 2001). Both fire atlas and fire scar data are

susceptible to errors (Shapiro-Miller et al. 2007). Fire

history from fire scars was conducted at two of our four

sites: TW and MB (Heyerdahl et al. 2008; note that in

Heyerdahl et al. 2008 sites are named differently: TW¼
TTM and MB ¼ COV). Results from this analysis

showed some inconsistencies with the fire atlas perim-

eters at one of these sites, TW, where two earlier century

fires (1910 and 1934) were not recorded in the fire atlas.

This discrepancy raises the possibility of fire history

errors at the two sites where we do not have detailed fire

scar data. However, fire atlas errors are more likely to

occur for earlier century fires when the delineation and

recording of fire perimeters was more imprecise than

later in the century. If so, our premise that repeatedly

burned stands experienced more fires than unburned

stands holds true. Perhaps more importantly, repeatedly

burned stands at these sites were less dense, had fire-

scarred trees, more charcoal, and higher available N in

the soils, which is consistent with higher fire frequency

(DeLuca and Sala 2005, Keeling et al. 2006, DeLuca and

Aplet 2008).

In addition, natural wildfire in unmanaged forests

cannot be perfectly controlled as a ‘‘treatment’’ in the

experimental sense. Fire severity varies between fires and

fires within a given perimeter are patchy, not all areas

experience fires equally, and some patches escape fire

altogether (Keane et al. 2008). Therefore, trees in stands

categorized as ‘‘repeatedly burned’’ cannot be consid-

ered a uniformly treated sample. In fact, our stratified

sampling of mature trees regardless of tree-level fire

effects was intended to capture this natural variability

which we believe provides a more realistic measurement

of stand-level effects. Of course, there is the possibility

that some of our sampled trees in the repeatedly burned

stands did not experience each fire directly at the base of

the tree. However, fire histories constructed from a

separate sample of fire-scarred trees in the unburned

stands at two of our sites show that the percentage of

trees that recorded a given fire within a known fire

perimeter varied between 100% and 80% (Heyerdahl et

al. 2008). These data are consistent with recent burn

severity research showing that unburned patches gener-

ally cover between 15% and 21% of the area within fire

perimeters (Keane et al. 2008). With repeated fires the

probability increases that a given tree was directly

challenged by fire. Therefore, we consider it highly

unlikely that areas around trees in the repeatedly burned

stands consistently escaped fire to an extent so as to

make their conditions indistinguishable from trees in

unburned stands.

Our findings raise the interesting possibility of

countervailing positive effects of lack of fire and/or

negative effects of frequent fire that can offset benefits of

reduced competition in repeatedly burned stands. In a

related study, Keeling (2009) showed that more recent

fires tended to produce short-term negative growth

responses in individual trees relative to old fires. These

negative growth responses could be due to higher

severity fires driven by changes in climate (Westerling

et al. 2006), or because low-intensity fires are easier to

suppress (Keane et al. 2008). Severe fires are more likely

to directly harm important tissues in trees (Ryan and

Frandsen 1991, Harrington 1993, Hood 2010, O’Brien et

al. 2010). Because we did not systematically sample trees

with visible signs of fire damage, our study was not

biased toward trees more likely to exhibit this counter-

vailing negative response. In any case, fires can injure

trees without leaving durable visible signs by injuring

roots or cambium (Hood 2010) or via negative effects on

soil fertility (Neary et al. 1999). Although our study was

not designed to elucidate all the specific mechanisms that

might produce countervailing effects, the possibility of

cumulative long-term negative effects of nonlethal fire

on trees is an interesting area for future research (Hood

2010).

In summary, we did not observe negative effects on

dominant ponderosa pine trees in stands not burned for

at least 70 years relative to repeatedly burned stands.

These results highlight the possibility that dominant

ponderosa pine trees in uneven-aged forests are less

responsive to the absence of fire than previously

recognized. This may be because mature trees are more

resilient to higher densities associated with lack of fire

(Skov et al. 2004, 2005) and/or because the negative

effects of recent fire may offset benefits of lower densities

maintained by fire. With the cautions outlined above in

mind, the management implications of our study may be

most relevant for remote, uneven-aged, old-growth

forests. Our results suggest that the ultimate replacement

of ponderosa pine in unburned stands may result from

increased competition in small size classes and lack of

effective recruitment of ponderosa pine vs. species such

as Douglas-fir. The shift of focus to subdominant trees

and recruitment may imply a restoration need of

retaining more diversity in smaller size classes for the

long-term perpetuation of old ponderosa pine forests. In

addition, a lack of detectable physiological effect in

higher density, unburned stands points to the need for

greater clarity with respect to the use of the term ‘‘forest

health’’ and management strategies that invoke this

concept. In second-growth, even-aged stands near

human population centers, empirically established risk

to property and forest resources will likely guide

management strategies. In such cases, ‘‘forest health’’

may refer to the probability of avoiding stand-replacing

disturbance, and density reduction may be desirable to

protect stands from catastrophic fire or to increase the

vigor of trees as a protective measure against insect
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outbreaks. However, our results suggest that responses

to fire and lack of fire in old forests may be more

complex and tree responses to common restoration

treatments in second-growth forests may not necessarily

replicate tree responses to recurrent wildfire in old-

growth, uneven-aged forests.
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